Введение в физику твердого тела

VI. Основы теории электронных энергетических зон

(Киттель – гл. 9,10, Гуревич – гл. 10)

- 6.1. Развитие представлений об электронных свойствах твердых тел
- 6.2. Энергетическая щель в модели почти свободных электронов
- 6.3. Приближение «сильной связи»
- 6.4. Теорема Блоха. Квазиимпульс
- 6.5. Металлы, полупроводники и диэлектрики
- 6.6. Строение поверхности Ферми в модели почти свободных электронов
- 6.7. Электронные, дырочные и открытые орбиты при движении электронов в

магнитном поле

- 6.8. Свойства дырок
- 6.9. Эффективная масса
- 6.10. Циклотронный резонанс в металлах
- 6.11. Эффект де Гааза-ван Альфена

6.1. Развитие представлений об электронных

свойствах твердых тел

Теория	Достижения
Классическая теория свободного элек- тронного газа Друде-Лоренца (1900)	Теория проводимости, теория твердотельной плазмы, закон Видемана-Франца
Квантовая теория Зоммерфельда сво- бодного электронного газа Ферми (1927)	Электронная теплоемкость металлов
Зонная теория твердых тел (основы заложены Ф. Блохом в 1928 г.)	Слабость электрон-ионного взаимодействия; различие металлов, полупроводников и ди- электриков; эффективная масса; электронная и дырочная проводимость; оптоэлектроника
Теория Ферми-жидкости Ландау (1957)	Особенности электрон-электронного взаимодействия, нулевой звук, спиновые волны

Теория Ферми-жидкости – это теория квазичастиц (возбуждений на поверхности Ферми), которые можно представлять как дискретные частицы (электроны), окруженные облаком возбужденного электронного газа.

Подробнее про теорию Ферми-жидкости можно прочитать в § 11.8 Гуревича.

6.2. Энергетическая щель в модели почти свободных

электронов

В этой модели на электроны действует лишь слабое возмущающее поле периодического потенциала ионных остовов, при этом в пространстве между остовами их потенциал считается близким к нолю. Модель хорошо работает на качественном уровне для валентных электронов.

Рассмотрим одномерный кристалл с периодом a (вектор трансляции обратной решетки $G = \pm 2n\pi/a$). Состояния электронов наиболее сильно будут отличаться от свободного на границах зон Бриллюэна, то есть при

$$k = \pm G/2 = \pm n\pi/a,$$

как это хорошо видно на следующем слайде.

Рис. 9.2. а) График зависимости энергии ε от волнового вектора k для свободных электронов. б) График зависимости энергии от волнового вектора электрона в моноатомной линейной цепочке (одномерной решетке) с расстоянием между атомами (постоянной решетки), равным а. Показана энергетическая щель (запрещенная зона) E_g , обусловленная первым брэгговским отражением при $k = \pm \pi/a$. Другие энергетические щели образуются при $k = \pm n\pi/a$ (здесь n — целые числа, n > 1).

Pakenetho $K = \pm \frac{n\pi}{4}$ coordereibyen yceoluan Sportoberoit gugppakigun, npu kotopoit nagasoesaa nextponnaa borna $\Psi(x) = A e^{i(\omega t - \kappa x)}$ Sygen bjan nagenethobars e expancennoit $\Psi(x) = A e^{i(\omega t + \kappa x)}$ B perypetrate brow weges thur norys boynuk-nyre coarrie bound gbyx munch (gia n=1): $\int \Psi(+) = e^{i\kappa x} - i\kappa x$ $\left(\mathcal{Y}_{(-)} = \ell^{i \kappa x} - \ell^{-i \kappa x} = 2 i \operatorname{Ain}(\kappa x) = 2 i \operatorname{Ain}(\overline{\mathcal{I}}_{a} \mathbf{z}) \right)$ Coorber abenno, marnaces questionnous coctornus (1) $||Y_{(+)}|^2 \sim coA^2(\frac{\pi}{a}x)$ (2) [14/4]² cs sin²(=x) Сосвяние (1) будет шися меньшую поченциань-

Потенциальная энергия электрона в периодической решетке

6.3. Приближение «сильной связи» (теория молекулярных орбиталей) (Гуревич – с. 131-132)

Приближение «сильной связи»

Диаграмма электронных уровней энергии все более длинной цепочки атомов, показывающая превращение молекулярных орбиталей в энергетические зоны одномерного кристалла

6.4. Теорема Блоха. Квазиимпульс

Теорема.

Собственные волновые функции уравнения Шрёдингера для электронов в периодическом поле решетки

$$U(\boldsymbol{r}) = U(\boldsymbol{r} + \boldsymbol{T})$$

имеют вид

$$\psi_k(\boldsymbol{r}) = \mathrm{e}^{i\boldsymbol{k}\boldsymbol{r}} u_k(\boldsymbol{r})$$

(функции Блоха), причем функции $u_k(r)$ инвариантны по отношению к трансляциям решетки: $u_k(r) = u_k(r + T)$.

Другими словами, функции $u_k(r)$ обладают той же периодичностью, что и потенциальная энергия U(r).

Примечания:

1) Множитель e^{ikr} соответствует плоской бегущей волне, в которой другой, содержащий время, множитель $e^{-i\omega t}$ опущен для краткости.

При трансляции на вектор *T* модуль функции ψ_k(*r* + *T*) = e^{*ikr*} ψ_k(*r*) не меняется, следовательно, состояние электрона остается неизменным.
 Функции ψ_k(*r*) зависят от волнового вектора *k*.

Трансляции на вектор обратной решетки

Вектор $p = \hbar k$ называтеся квазиимпульсом. Подобно обычному импульсу, он фигурирует в законах сохранения для электронов в кристалле, однако физически различные значения ограничены первой зоной Бриллюэна. Такое отличие от обычного импульса связано с передачей импульса от электрона к решетке на границах зоны Бриллюэна:

Изменение волнового вектора электрона под действием постоянной силы

6.5. Металлы, полупроводники и диэлектрики

Рассмотрим одномерный кристалл из N ячеек длиной a (длина кристалла L = Na).

Разрешенные значения волнового числа

 $k = 0; \pm 2\pi/L; \pm 4\pi/L; ...; N\pi/L,$

 $k_{max} = N\pi/L = \pi/a$ – граница первой зоны Бриллюэна.

Всего получается N различных значений k. С учетом спина, общее число независимых состояний электрона в каждой энергетической зоне будет равно 2N. В результате, если энергетические зоны не перекрываются, то при нечетном числе электронов на каждую примитивную ячейку получается металл, а при четном – диэлектрик или полупроводник.

Различие между диэлектриками, металлами и полупроводниками

<u>6.6. Строение поверхности Ферми в модели почти</u> <u>свободных электронов</u>

Рис. 10.1. а) Построение в k-пространстве первых трех зон Бриллюэна для случая плоской квадратной решетки.

Построение Харрисона

Вторая зона

Третья зона

Поверхность Ферми меди

6.7. Электронные, дырочные и открытые орбиты при

движении электронов в магнитном поле

Рис. 10.8. Изменение волнового вектора электрона, лежащего на поверхности Ферми, при движении под действием магнитного поля.

6.8. Свойства дырок

Дырочными состояниями называются незанятые электронами вакантные состояния.

Рис. 10.11. а) В момент t = 0 все состояния заняты, за исключением F в вершине зоны. В точке F скорость v_x равна нулю, поскольку $de/dk_x = 0$. б) Электрическое поле E_x приложено вдоль положительного направления оси x. Сила, действующая на электрон со стороны поля, приложена в направлении $-k_x$, н электроны последовательно перемещаются по кривой, сдвигая дырку в положение E. в) Дальнейшее перемещение элсктронов в k-пространстве сдвигает дырку еще дальше, в D,

Появление дырки при межзонном переходе

6.9. Эффективная масса

Charlognow racmuya: E= p2 = h2k2 de = Pm $\frac{d^2 \varepsilon}{dp^2} = \frac{1}{m}$ $m = \frac{\hbar^2}{d^2 \mathcal{E}} = \frac{1}{d^2 \mathcal{E}}$ B kjucmane bange skapenyna zokh $\mathcal{E}(p) \approx \mathcal{E}_0 + \frac{d\mathcal{E}}{dp} p + \frac{1}{2} \frac{d^2 \mathcal{E}}{dp^2} p^2 + \dots$

 $m^* \equiv \frac{1}{\frac{d^2 \varepsilon}{dp^2}} \Longrightarrow \mathcal{E}(p) \approx \mathcal{E}_0 + \frac{p^2}{\frac{fm^*}{2m^*}} + \dots$ Taxue sapajon, no onpegerenne, sopopenterbrar uacca - To makaer be uruna m*, rmo $(m^*)^{-1} = \frac{d^2 \mathcal{E}}{dp^2} = \frac{1}{k^2} \frac{d^2 \mathcal{E}}{dk^2}$.

Bangrese anujotponno recepenyma $(m_{\chi}^{*})^{-1} = \frac{d^{2}\varepsilon}{dp_{\chi}^{2}}, \ (m_{\chi}^{*})^{-1} = \frac$ $\mathcal{E} \approx \mathcal{E} + \frac{f_{x}}{2m_{x}^{*}} + \frac{f_{y}}{2m_{y}^{*}} + \frac{f_{z}}{2m_{z}^{*}} + \frac{f_{z}}{2m_{z}^{*}} .$

6.10. Циклотронный резонанс в металлах

Рис. 10.24. Схема, поясняющая геометрию эффекта Азбеля — Канера (циклотронный резонанс в металле), часто используемая при описании этого явления. Радиочастотное электрическое поле *E* может быть перпендикулярным или параллельным направлению статического магнитного поля *B*; при этом поля *E* и *B* лежат в плоскости поверхности образца. Глубина проникновения радиочастотного поля (скин-слой) показана на схеме затенением. На правом рисунке показана орбита электрона. На верхнем участке орбиты электрон при каждом обороте движется в скин-слое и подвергается действию радиочастотного электрического поля; при этом электрон либо приобретает энергию от этого поля, либо отдает свою энергию полю.

Jacobie pejonanca: nepuog epipoboro gbumenua
ziektyponob b narmimman nove b

$$T = \frac{2\pi}{W_e} = 25T \frac{M_e}{eB}$$
,
 $ge w_e = \frac{eB}{M_e} - ynknotponnar ractota,$
 $M_e - ynknotponnar maca
goimeen doimis epaten nepuogy konodanin ziektpu-
reckoro norsh, to ecnib
 $2\pi \frac{M_e}{eB} = n \cdot \frac{2\pi}{W} \quad (n = 1, 2, 3, ...).$
Imo dyget neidrogatics b narmitabis norsk
 $B_n = \omega = \frac{M_e}{en}$. Snar zhi norst, moreno
noismi ynkotponnyto wacy $M_e = \frac{eB_n n}{W}$$

Рис. 10.27. Экспериментальная кривая циклотронного резонансного поглощения в калии при частоте переменного поля 68 ГГц. Статическое магнитнос поле **В** лежит в плоскости (110). Для всех других направлений **В** в этой плоскости кривые имеют очень похожий вид. (Из работы Граймса и Кипа [17].)

$$\begin{array}{l}
 f_{k} \frac{d\vec{k}}{dt} = -e[\vec{v}\vec{B}] \\
 ypabnence and $|\vec{k}| \\
 \frac{d\kappa}{dt} = \frac{eB}{h} \quad v_{\perp} = \frac{eB}{h^{2}} (\vec{v}\mathcal{E}_{\kappa})_{\perp} , \\
 ge \quad v_{\perp} \quad u \quad (\vec{v}\mathcal{E}_{\kappa})_{\perp} - ny \text{ occurring between number of } ker number of k$$$

Основной вклад в циклотронный резонанс дают наиболее стабильные экстремальные орбиты.

Рис. 10.28. Пример поверхности Ферми, для которой экстремальные орбиты лежат в «пояске» AA'; для орбит этого «пояска» циклотронный период приближенно постоянный. Другие орбиты, такие как в «пояске» BB', дают изменение периода при смещении плоскости сечения.

Пусть ΔS есть площадь сечения между двумя орбитами с одним и тем же значением проекции k_B , но различающимися по энергии на $\Delta \mathscr{E}$.

Рис. 10.29. Орбиты в k-пространстве при постоянном значении проекции k_B . Одна орбита отвечает энергии ε , другая — энергии $\varepsilon + \Delta \varepsilon$, где $\Delta \varepsilon$ — постоянная величина. Интервал значений Δk_{\perp} для этих двух орбит может изменяться вдоль орбиты. Площадь между орбитами (заштрихованная область) равна ΔS .

$$(\nabla \mathcal{E}_{\mathcal{K}})_{I} = \frac{\Delta \mathcal{E}}{\Delta \mathcal{K}_{I}} \Longrightarrow \oint \frac{d\mathcal{K}}{(\nabla \mathcal{E}_{\mathcal{K}})_{I}} = \frac{1}{\Delta \mathcal{E}} \oint (\Delta \mathcal{K})_{I} d\mathcal{K} =$$

$$= \frac{1}{\Delta \mathcal{E}} \Delta \mathcal{S} (3 \text{ and spin scob-annax mongage menegy} openmand)$$

$$T = \frac{\hbar^{2}}{e^{B}} \frac{\partial \mathcal{S}}{\partial \mathcal{E}}; \quad \mathcal{W}_{e} = \frac{2\pi}{T} = \frac{2\pi e B}{\hbar^{2}} \frac{\partial \mathcal{E}}{\partial \mathcal{S}}$$

$$\mathcal{M}_{e} \equiv \frac{eB}{\mathcal{W}_{e}} = \frac{\hbar^{2}}{2\pi} \frac{\partial \mathcal{S}}{\partial \mathcal{E}}.$$

6.11. Эффект де Гааза-ван Альфена

Рассмотрим осцилляции магнитного момента для двумерного металла, перпендикулярного магнитному полю с индукцией **B**.

 $\mathcal{E}_{l} = \hbar w_{c} (l + \frac{1}{2}), \ l = 0, 1, 2, \dots$ $\begin{cases} m_c = \frac{\hbar^2}{2\pi} \frac{\partial S}{\partial \mathcal{E}} \\ m_c(\mathcal{E}) = const. (napadawreckan zona) \end{cases}$ $\mathcal{E} = \frac{\hbar^2}{2\pi m_e} S_e$ $S_{e}^{\prime} = \frac{2\pi m_{c}}{t^{2}} \hbar \omega_{c} \left(l + \frac{1}{2}\right)$

Рис. 10.31. а) Двумерное k-пространство; плоскость $k_x k_y$. Магнитное поле отсутствует. Точками показаны разрешенные состояния (орбигали) электронов. б) В достаточно сильном магнитном поле точки, представляющие состояния свободных электронов, можно изобразить в той же плоскости $k_x k_y$ расположенными на окружностях. Каждая следующая окружность соответствует возрастанию на единицу квантового числа l

Dur klagparnore sopazyon LXL na sque svenspon-noe cocroance nuxcquice neousage (2) & K-macspancole. The way age venergy optima in b warmit have none $\Delta S_{\ell} = \frac{2\pi eB}{\hbar}$. Or choga ha ageny optiming e have point njurseguter rucio coctorenui (1)? 2TTE B = EB -Knatuo ete borponegenus ypobreti, koropas erazarace ogunardet que beex l.

l орбит могут в сумме содержать до $N = \xi B l$ электронов. Поскольку число N фиксировано, то это условие дает резонансные поля

 $B_l^{-1} = \xi l/N,$

при которых l уровней полностью заполнены, а (l + 1)-й полностью пуст. В этих полях наблюдаются локальные минимумы энергии \mathscr{E} системы электронов.

Рис. 10.33. Верхняя кривая — график зависимости полной энергии электронов

Рис. 10.34. Зависимость магнитного момента от 1/В при абсолютном нуле.

В трехмерном случае опять основную роль играют экстремальные сечения поверхности Ферми *S*. Период осцилляций

Рис. 10.37. Эффект де Хааза — ван Альфена в золоте при магнитном поле В [[111]. Кривая показывает осцилляции, обусловленные движением по орбитам максимального сечения (через центр «шара»), — тонкая структура с малым периодом. На эту картину накладываются осцилляции с большим пернодом, обусловленные движением по орбитам вокруг сечения «шейки» перемычки. Эти орбиты обозначены на рис. 10.26 буквами В и N соответственно. (I. M. Templeton.)

Участок поверхности Ферми с орбитой типа «собачья кость».

Введение в физику твердого тела

VII. Свойства полупроводников

(Киттель – гл. 11)

- 7.1. Общие представления
- 7.2. Собственная проводимость
- 7.3. Примесная проводимость
- 7.4. Особенности эффекта Холла в полупроводниках
- 7.5. Циклотронный резонанс в германии и кремнии
- 7.6. *р-п* переход
- 7.7. Поляроны
- 7.8. Сильно легированные и аморфные полупроводники

7.1. Общие представления

Рис. 11.1. Концентрации носителей тока (электронов) в металлах, полуметаллах и полупроводниках. Область, отнесенная к полупроводникам, может расширяться в сторону больших концентраций носителей, если будет повышаться концентрация примесных атомов. (Горизонтальная ось введена здесь для наглядности графика и не имеет какого-либо смысла.)

Рис. 17.5. Температурная зависимость логарифма проводимости германия при различных концентрациях трехвалентных и пятивалентных примесей [2]. Тем-

Собственная проводимость определяется, прежде всего, шириной запрещенной зоны E_g : $\sigma \propto \exp[-E_g/(2k_BT)]$.

Типы полупроводников

Элементарные:	Se	1,89 эВ
	Si	1,10 эВ
	Ge	0,65 эВ
<u>A^{III}B^V</u> :	GaN	3,4 эВ
	GaP	2,24 эВ
	AlSb	1,60 эВ
	GaAs	1,35 эВ
	InP	1,26 эВ
	GaSb	0,67 эВ
	InAs	0,35 эВ
	InSb	0,17 эВ

 $\frac{A^{II}B^{VI}}{A^{IV}B^{VI}}: Hg_{1-x}Cd_{x}Te$ Узкозонные Узкозонные

Типы полупроводников

Прямые (а) и непрямые (б) оптические переходы

Спектры поглощения для прямозонных (a) и непрямозонных (б) полупрогводников

Типы полупроводников

Рис. 11.8. Оптическое поглощение в чистом антимониде индия (InSb). Здесь переходы прямые, так как края зоны проводимости и валентной зоны отвечают центру зоны Бриялюэна при k = 0. (G, W, Gobeli, H, Y, Fan.)

7.2. Собственная проводимость

Энергетическая схема полупроводника (слева) и функция распределения Ферми (справа)

Будем отсчитывать энергию от потолка валентной зоны и рассмотрим случай, когда расстояние от химпотенциала μ до обеих зон много больше k_BT (область собственной проводимости при невысоких температурах). Тогда для параболических зон

 $\begin{cases} \mathcal{E}_{e}(k) = E_{g} + \frac{\hbar^{2}k^{2}}{2m_{e}^{*}} \quad (zona njabogumo en$ $\\ \mathcal{E}_{h}(k) = -\frac{\hbar^{2}k^{2}}{2m_{h}^{*}} \quad (basentian zona) \end{cases}$ 2 $-\frac{1}{\rho \xi_{s}} = \frac{\rho \xi_{s}}{\rho \xi_{s}} + 1$

Benowing, Kan paceren balta meannach cocmanning . $D_e(E) = \frac{1}{2\pi^2} \left(\frac{2 m_e^*}{t^2} \right)^2 \sqrt{E - E_g}$ $\mathcal{D}_{h}(\varepsilon) = \frac{\sqrt{2}\pi^{2}}{2\pi^{2}} \left(\frac{2}{h^{2}}\right)^{\frac{3}{2}} \sqrt{-\varepsilon}$ Unoro $n \equiv \sqrt{V} = \frac{1}{V} \int_{\mathcal{E}} f_{e}(\mathcal{E}) \mathcal{D}_{e}(\mathcal{E}) d\mathcal{E} =$ $=\frac{1}{2\pi^2}\left(\frac{2m_{e}^{\star}}{\hbar^2}\right)^{\frac{3}{2}}e^{\frac{1}{4\kappa_{e}T}}\int_{VE-E_{g}}e^{-\frac{1}{\kappa_{e}T}}dE =$ $=\frac{1}{2\pi^2}\left(\frac{2m_e^*}{h^2}\right)^{\frac{1}{p}}\left(\frac{\lambda_{a}-E_{a}}{k_{a}T}\left(k_{a}T\right)^{\frac{3}{2}}\right)\sqrt{\frac{E-E_{a}}{k_{a}T}}\left(-\frac{E-E_{a}}{k_{a}T}\right)\left(\frac{E-E_{a}}{k_{a}T}\right)$ $\int \sqrt{5e} e^{-x} dx = \frac{\sqrt{5t}}{2}$

 $n = 2 \left(\frac{m_e^* k_B T}{2\pi h^2} \right)^2 e^{\frac{\pi - E_g}{K_B T^2}} = N_e f_e(E_g),$ 29e Ne = 2 (m^{*}/₂keT)² − 2999ekunthuan Kongenspangun cocmarkent & zone maboquinacmu. Anarowino $p = \int_{-\infty}^{\infty} f_h(\varepsilon) D_h(\varepsilon) d\varepsilon$, kompenspagne gogies $\int_{-\infty}^{\infty} f_h(\varepsilon) D_h(\varepsilon) d\varepsilon$, $p=2\left(\frac{m_{h}^{*}k_{B}T}{25h^{2}}\right)^{\frac{3}{2}}e^{-\frac{1}{k_{B}T}}=N_{h}f_{h}(0),$ (2) 290 Nh = 2 (mike T) 2 - supprextubrida kong. cocharments - Nh e Ket = Ne Nh l - Ket un $np = 4 \left(\frac{k_{e}T}{2\pi \hbar^{2}}\right)^{3} \left(m_{e}^{*} m_{h}^{*}\right)^{2} e^{-\frac{E_{e}}{k_{e}T}} - m_{m_{e}} \frac{2\pi \kappa c_{h}}{m_{e}} gevelopping$

50

Зависимость пр(1/Т) для кремния в области собственной проводимости

Bayrae codabennoù malegnuo chur $n_i = p_i = \sqrt{N_e N_h e^{-\frac{k_e T}{k_e T}}} = 2 \frac{(k_e T)^2}{2\pi h^2} (m_e^* m_h^*)^4 e^{-\frac{k_e T}{2k_e T}}$ Backen meneps, ye kanaguna xundereguar. Dis moro paggenne nornenno pabencoba (2) na (1) c yreman n=p: $1 = \left(\frac{m_h}{m_{\star}}\right)^2 e^{\frac{1}{2}} e^{\frac{1}{2}} e^{-\frac{1}{2}} e^{\frac{1}{2}}$ $e^{\frac{2}{K_{e}T}} = \left(\frac{m_{h}^{*}}{m_{e}^{*}}\right)^{2} e^{\frac{2}{K_{e}T}}$ $\mu = \frac{1}{2} + \frac{3}{4} K_{g} T \ln \frac{m_{h}^{*}}{m_{h}^{*}}$ M(T-ro) ~ = ; ecu m_h = me, me u = = for mu under mennepalype, you koropar uneer necro coocsbennaa upoboquinocth Typologunocto 5= Meen+ Mhep ~ (Me+Mh) en col 2Ket rge nogbumenocmu le = ete u up = eth

52

7.3. Примесная проводимость

Возникновение донорного уровня мышьяка в кремнии

Возникновение акцепторного уровня бора в кремнии

Энерин вязи жекеронов (дарок) на допорах (акцепторах) можено оценить в рашках ведородоноgoonoù nogen gus kynonobekoro notenynaria $P_{(\tau)} = \pm \frac{e}{\mathcal{E}_{e}\mathcal{E}_{e}\tau}$ Ed = 2(45TE ETF (que akyenmopol anaronirko). Dagnye begopogonogoonate opdumu a = 4TEEEAT = Ed ma a ~ 30 Å que upernue (a - Lapobcount paguye). Moryn cynjecobabame merence a ruyearne ypobner.

Энергии ионизации доноров E_d (в эВ) в германии и кремнии

Донорами служат примесные атомы пятивалентных элементов.

	р	As	Sb
Si	0,045	0,049	0,039
Ge	0,0120	0,0127	0,0096

Энергии ионизации акцепторов E_a (в эВ) в германии и кремнии

Акцепторами служат примесные атомы трехвалентных элементов

	в	AI	Ga	ln
Si	0,045	0,057	0,065	- 0,16
Ge	0,0104	0,0102	0,0108	0,0112

Brenchederkon genepanne neughpolognike neu
wyrux Tennepannypax (KgT << E1) bruecmo

$$n_i = \sqrt{N_e N_h} l^{-\frac{E_e}{2K_eT}} \int_{yges} \frac{n \approx \sqrt{N_e N_d} l^{-\frac{E_d}{2K_eT}}}{n \approx \sqrt{N_e N_d} l^{-\frac{E_d}{2K_eT}}},$$

 $rge N_d - konnenspansen genepal. Stym K_eT >> E_d$
dygen unere $n \approx N_d$. Strabogumach $\overline{b} = n_e en$.
 $\overline{b} \cos l^{-\frac{E_d}{2K_eT}}$ neu KeT << Ed.
Stym composariem answertopanne
 $p \approx \sqrt{N_h} N_a l^{-\frac{E_a}{2K_eT}}$ neu KeT << Ea,
 $p \approx N_a$ neu KeT >> Ea (Na-kons. augentoped),
 $\overline{b} = p_h ep$,
 $\overline{b} \cos l^{-\frac{E_a}{2K_eT}}$ neu KeT << Ea.

Рис. 11.14. Температурная зависимость концентрации электронов — носителей тока (a) и холловской подвижности (б) для трех образцов кремния с примесью мышьяка. (По Морину и Мейта.)

7.4. Особенности эффекта Холла в полупроводниках

60

B naw ny ny obegrunda
$$\langle T \rangle = \int_{E_{g}}^{\infty} T(\varepsilon) f(\varepsilon) D(\varepsilon) d\varepsilon$$
,
 $\langle T^{2} \rangle = \int_{E_{g}}^{2} T(\varepsilon) f(\varepsilon) D(\varepsilon) d\varepsilon$, $\langle T^{2} \rangle \neq \langle T \rangle^{2} u$
xout - graktop A enpegensement zahuenvortene $T(\varepsilon)$.
Doberno creitaennet, runo $T(\varepsilon) = T_{o} \varepsilon^{p}$. Bogmonien
bajwanni, korga gunna obadagnoro ny odera $l(\varepsilon) = const.,$
morga bpeur choogenoro ny odera $T = \frac{1}{v} = \frac{1}{\sqrt{2\varepsilon}} const.,$
mo ecmis $p = \frac{1}{2}$. B How cuy roc $A = 3T \approx 1,18$. Tak
now yraemer ny u bocopier teune parmijpax gis paceernus
ha gronanax. Typu negene teune pasyon, korga
njeooragaem paceernue na zapaneernus ny unecars
 $l cos \varepsilon^{2}$, $T cos \varepsilon^{32}$, $p = \frac{3}{2}$ u $A \approx 1,93$.
Bauvena $n_{H} = \frac{1}{\varepsilon lR_{H}}$ nazubaemer xanobe -
koti konisen myaisiet, a beuvenna $\mu_{H} = \frac{5}{\varepsilon n_{H}} = |R_{H}|5 -$
xanobekatt negbunen curren.

7.5. Циклотронный резонанс в Ge и Si

Ушклотронный резонанс, заклогалощийся в резнол увешчении поглащения СВЧ- нациосы, позвалает спределить компонения тензора $\frac{1}{m_{\mu\nu}^{\star}} = \frac{1}{\hbar^2} \frac{\partial^2 \mathcal{E}}{\partial k_{\mu} \partial k_{\nu}} .$ On nadmogomen nym $\omega = \omega_e = \frac{eB}{m_e^{\star}}$ nym yendem, uno Wet > 1. Jagara - nammu me. Y gua zoren njabagu uacmu Si um Ge $\mathcal{E}(k) = h^{2} \left(\frac{K_{x} + k_{y}^{2}}{2 m_{x}^{*}} + \frac{K_{z}^{2}}{2 m_{x}^{*}} \right),$ ась 7 параненыма диникой оси сорероида mt - поперегная насса, me - продонькая насса.

Рис. 11.19. Эллипсонды постоянной энергии для электронов в кремнии (m_i/m_i = 5).

and the second second

$$\begin{cases} v_x = \frac{1}{h} \frac{\partial \mathcal{E}}{\partial k_x} = \frac{\hbar k_x}{m_t^*} \\ v_y = \frac{1}{h} \frac{\partial \mathcal{E}}{\partial k_y} = \frac{\hbar k_y}{m_t^*} \\ v_z = \frac{1}{h} \frac{\partial \mathcal{E}}{\partial k_y} = \frac{\hbar k_z}{m_t^*} \\ \frac{1}{h} \frac{dk}{dt} = -e[v B] \quad (awa lopekusa) \\ \downarrow n \mu w B II ocu x \\ \frac{1}{h} \frac{dk_x}{dt} = 0; \quad \hbar \frac{dk_y}{dt} = -eB v_z = -\frac{\hbar eB}{m_t^*} k_z, uw \\ \frac{dk_y}{dt} = -w_e k_z, \quad vge \ w_e = \frac{eB}{m_t^*} \\ \frac{1}{h} \frac{dk_z}{dt} = eB v_y = \frac{\hbar eB}{m_t^*} k_y, uw \\ \frac{dk_z}{dt} = w_t k_y, \quad vge \ w_t = \frac{eB}{m_t^*} \\ \frac{d^2 k_y}{dt^2} = -w_e \frac{dk_z}{dt} = -w_e w_t k_y \end{cases}$$

Структура энергетических зон германия

Вкремии $m_{\ell}^{*} = 0,98 \, m_{e}, m_{t}^{*} = 0,19 \, m_{e}$. Зоны тоженых и иских двурак годорираваны — кедиалоногие кончания текуора $m_{\mu r}^{*}$. Онекь приближение кончаки в кремении ~ 0,16 me и 0,5 me

Эффективные массы электронов и дырок

Кристалл	Ширина энергети- ческой щели, эВ	Масса электрона, ^m e/ ^m	Масса тяжелой дырки, m _{hh} /m	Macca легкой дырки, ^m lh/ ^m
InSb	0,23	0,0155	0,4	0,016
InAs	0,36	0,024	0,41	0,026
GaSb	0,81	0,042		0,052
GaAs	1,52	0,07	0,68	0,07

7.6. *р-п* переход

р-п переход инеет сильно аселинеричкую bouts - annepryro xaparsepuctury. The nononce -Tenskam nanpancenmellmak Id = Is (CKOT - 1) nper amperyarenteren - In = Is (1 - e - eu), 2ge Is - more za crem meneobois renepayin cureners i ux gugpgyzien

Устройства на основе полупроводников

 $\lambda = c/\upsilon = ch/E_a$

Светоизлучающий диод

Устройства на основе полупроводников

Биполярный транзистор

Википедия, NPN transistor basic operation.svg: KaiMartin, Cepheiden

7.7. Поляроны

Рис. 11.24. Схема образования полярона. а) Черным кружком показан элекгрон проводимости в жесткой решетке ионного кристалла КСІ. Стрелками показаны направления сил, действующих на электрон со стороны соседних ионов. б) Ситуация в случае, когда электрон находится в упругой (деформируемой) решетке. Электрон вместе с областью решетки, испытавшей деформацию, называется поляроном. Смещение ионов увеличивает эффективную силу инерции и, следовательно, эффективную массу электрона. Эта эффективная масса в кристалле КСІ оказывается в 2,5 раза больше, чем в жесткой решетке
Электростатическое взаимодействие электрона с решеткой вызывает ее деформацию и поляризацию.

Электрон + поле напряжений = полярон.

$$\frac{m_{pol}^{*} \approx m^{*}(1 + \frac{d}{b})}{\text{Koncmanma sueripon-genonous bjouwo-generalism }} \\ generbur d: \\ \frac{d}{2} = \frac{\text{mepuer gegropmanum}}{f_{L} - R_{L}} \approx \frac{\text{rucuy gpononob bengen}}{\text{weg serve glumegueroes}} \\ (R_{L} - racmoma maganeticos onewseekoro gronona). \end{cases}$$

Кристалл	KC1	KBr	AgCl	AgBr	ZnO	PbS	InSb	GaAs
	3,97	3,52	2,00	1,69	0,85	0,16	0,014	0,06
n [*] pol	1,25	0,93	0,51	0,33			0,014	
ı*	0,50	0,43	0,35	0,24			0,014	
m_{n01}^*/m^*	2,5	2,2	1,5	1,4	6		1,0	_

7.8. Сильно легированные и аморфные

полупроводники

VIII. Свойства диэлектриков

(Киттель – гл. 13)

- 8.1. Локальное электрическое поле
- 8.2. Формула Клаузиуса-Мосотти
- 8.3. Механизмы поляризации
- 8.4. Время релаксации ориентационной поляризуемости

8.1. Локальное электрическое поле

Электрическим диполем называется система из двух точечных электрических зарядов, одинаковых по величине, но противоположных по знаку:

Дипольный электрический момент p = ql. Внешнее электрическое поле E_0 приводит к появлению поляризованности диэлектрика. Вектор поляризованности равен суммарному дипольному электрическому моменту единицы объема диэлектрика:

$$\overline{p} = \frac{\xi p_i}{V}$$

(V - объем диэлектрика). Дипольный электрический момент p_i атома или молекулы с номером *i* определяется действующим на данную молекулу локальным электрическим полем $E_{i \, loc}$:

$$\boldsymbol{p}_i = \boldsymbol{\alpha}_i \boldsymbol{E}_{i \ loc},$$

где коэффициент α_i называется молекулярной поляризуемостью.

Локальное электрическое поле складывается из внешнего поля E_0 , деполяризующего поля E_1 , поля Лоренца E_2 и поля соседних электрических диполей E_3 :

$$E_{loc} = E_0 + E_1 + E_2 + E_3 = E + E_2 + E_3,$$

где поле $E = E_0 + E_1$ является средним макроскопическим электрическим полем в диэлектрике.

<u>Деполяризующее поле</u>

Рис. 13.5. Деполяризующее поле E_1 направлено противоположно P. Показаны фиктивные поверхностные заряды, которые и создают поле E_1 внугри эллипсоида. Для тел эллипсоидальной формы

$$\boldsymbol{E}_1 = -N\boldsymbol{P}/\boldsymbol{\varepsilon}_0,$$

где деполяризующий фактор формы $N = \frac{1}{3}$ для сферы, N = 1 для поля E_0 , перпендикулярного тонкой пластинке, $N = \frac{1}{2}$ для поля, перпендикулярного оси цилиндра, N = 0 вдоль плоскости пластинки или оси цилиндра.

Коэффициент к, связывающий **Р** и **E**, называется диэлектрической восприимчивостью:

$$\boldsymbol{P} = \boldsymbol{\varepsilon}_0 \boldsymbol{\kappa} \boldsymbol{E} = \boldsymbol{\kappa} (\boldsymbol{\varepsilon}_0 \boldsymbol{E}_0 - N \boldsymbol{P}).$$

Отсюда

$$P = \frac{\kappa \varepsilon_0}{1 + N \kappa} E_0.$$

Поле Лоренца

Поле Лоренца направлено в ту же сторону, что и поляризованность, то есть оно поддерживает внешнее поле:

 $\boldsymbol{E}_2 = \frac{1}{3}\boldsymbol{P}/\varepsilon_0$

Поле диполей внутри полости

В случае кубической симметрии это поле $E_3 = 0$. Тогда

$$\boldsymbol{E}_{loc} = \boldsymbol{E}_0 + \boldsymbol{E}_1 + \frac{1}{3}\boldsymbol{P}/\varepsilon_0 = \boldsymbol{E} + \frac{1}{3}\boldsymbol{P}/\varepsilon_0,$$

при этом в уравнениях Максвелла будет фигурировать среднее макроскопическое поле $E = E_0 + E_1$.

8.2. Формула Клаузиуса-Мосотти

Dusiekmpureckas nomugaeworts $\mathcal{E} = \frac{\mathcal{D}}{\mathcal{E}F} = \frac{\mathcal{E}\mathcal{E}+\mathcal{P}}{\mathcal{E}F} = 1+\mathcal{R}$ Ean Ni - Kongenenpagua amouab c narapuzyenación di l'equenuye edrema, mo $\vec{P} = \sum_{i} N_i \vec{p_i} = \sum_{i} N_i \alpha_i \vec{E}_{ilor} = \sum_{i} N_i \alpha_i (\vec{E} + \frac{1}{3\epsilon_0} \vec{P}).$ Omenoga $\vec{p} = \frac{\sum N_i d_i E}{1 - \frac{1}{3E} \sum N_i d_i}$ $\mathcal{E} - 1 = \mathcal{R} \equiv \frac{P}{\mathcal{E}_{o}\mathcal{E}} = \frac{\sum \mathcal{N}_{i}\mathcal{A}_{i}}{\mathcal{E}_{o} - \frac{1}{3}\sum \mathcal{N}_{i}\mathcal{A}_{i}}$ $\mathcal{E} = 1 + \mathcal{D} \Longrightarrow \mathcal{E} + \mathcal{Z} = \mathcal{D} + \mathcal{Z} = \frac{\sum \mathcal{A}_i \mathcal{L}_i + \mathcal{Z}_i - \sum \mathcal{A}_i \mathcal{L}_i}{\mathcal{E}_o - \frac{1}{3} \sum \mathcal{N}_i \mathcal{L}_i}$ $\frac{\mathcal{E}-1}{\mathcal{E}+2} = \frac{1}{3\mathcal{E}_0} \sum_{i} \mathcal{N}_i \mathcal{A}_i - \frac{1}{\mathcal{N}_i} - \frac{1}{\mathcal{N}_i} \sum_{i} \mathcal{N}_i - \frac{1}{\mathcal{N}_i} \sum_{i} \mathcal{N}_i \mathcal{A}_i - \frac{1}{\mathcal{N}_i} - \frac{1}{\mathcal{N}_i} \sum_{i} \mathcal{N}_i - \frac{1}{\mathcal{N}_i} - \frac{1}{\mathcal{N}_i} \sum_{i} \frac{1}{\mathcal{N}_i} \sum_{i} \mathcal{N}_i - \frac{1}{\mathcal{N}_i} - \frac{1}{\mathcal{N}_i} \sum_{i} \frac{1}{\mathcal{N}_i} \sum_{i} \frac{1}{\mathcal{N}_i} - \frac{1}{\mathcal{N}_i} \sum_{i} \frac{1}{\mathcal{N}_i} \sum_{i} \frac{1}{\mathcal{N}_i} - \frac{1}{\mathcal{N}_i} \sum_{i} \frac{1}{\mathcal{N}_i} \sum_{i} \frac{1}{\mathcal{N}_i} - \frac{1}{\mathcal{N}_i} - \frac{1}{\mathcal{N}_i} \sum_{i} \frac{1}{\mathcal{N}_i} - \frac{1}{\mathcal{N}_i} - \frac{1}{\mathcal{N}_i} \sum_{i} \frac{1}{\mathcal{N}_i} - \frac{1}{\mathcal{N}_i}$ Eau novapuezobannocro vava, E Swyka k 1, a E+2 ≈ 3, no novyraen npuchuencenese boyamenue East+ E S. Nidi

8.3. Механизмы поляризации

N₂, O₂, алмаз и прочие одноэлементные соединения – только электронная поляризуемость.

СО₂ – электронная + атомная поляризуемости.

H₂O, C₂H₅OH и прочие полярные соединения электронная + атомная + ориентационная поляризуемости.

Due nowymous benjeets npu
$$p_i E \ll K_B T$$

opmenmanymonstar nowywygenoch $\lambda_{iop} = \frac{p_i^2}{3k_B T}$,
nowkar nowywygenoch $\lambda_i = \lambda_0 + \lambda_{iop} = \lambda_0 + \frac{p_i}{3k_B T} - \frac{p_i^2}{3k_B T}$

Рис. 13.13. Частотная зависимость вещественной части полной поляризуемости ($\alpha = \alpha_{dip} + \alpha_{ion} + + \alpha_{el}$) в общем случае. Показаны области, где каждый из вкладов в α особенно существен, и соотношение между ними.

Badracomo bugunoro a gubipaquaremotoro chema eyweckbenner manska rientpannar narapu-zyewarde Lel ITtorga buecto grapungua Kurayzuryca -Uscammu Sygen unems grapunguy Sapeny - Sapentica: $\frac{n^2 - 1}{n^2 + 2} = \frac{1}{3\varepsilon_0} \sum_{i} N_i \alpha_i^{el},$ ge n «VE - Kosopopuyueun meronnenur chema.

8.4. Время релаксации ориентиционной

поляризуемости

Рис. 13.17. Температурная зависимость диэлектрической проницаемости льда при различных частотах [15]. Значения частоты в Гц приведены около кривых.

Defait normer, two b neugrocmous

$$d_{op}(w) = \frac{\lambda_o}{1 - i w \tau}$$

$$ii, tyne manne Pu & (E_{vor} \approx E)$$

$$E(w) \approx 1 + \frac{1}{\xi} N d(w) = 1 + \frac{1}{\xi_o} \frac{d_o N}{1 - i w \tau} = E' + i E'',$$

$$uge \ E' = 1 + \frac{1}{\xi_o} \frac{d_o N}{1 + w^2 \tau^2},$$

$$\mathcal{E}'' = \frac{1}{\mathcal{E}_0} \frac{\alpha_0 N \omega \tau}{1 + \omega^2 \tau^2}$$

Рис. 13.18. Частотная зависимость вещественной (ϵ') и мнимой (ϵ'') частей диэлектрической проницаемости $\epsilon = \epsilon' + i\epsilon''$ при наличии ориентационного механизма релаксации. (Единицы СГС.)

