10. Люминесценция

Люминесценция – это излучение, представляющее собой избыток над тепловым излучением тела и продолжающееся в течение времени, значительно превышающего период световых колебаний.

Фотолюминесценция, катодолюминесценция, электролюминесценция, радиолюминесценция, рентгенолюминесценция, хемилюминесценция, ...

и люминесценция, возбужденная магическим словом!

Внутрицентровые переходы

Правила отбора для электродипольных переходов:

Кристаллическая структура и спектры люминесценции NaLuO₂:Eu³⁺ (a) и NaGdO₂:Eu³⁺ (б).

Люминофор с Ce³⁺

Рекомбинационное излучение

Антистоксово излучение: hv' > hv!

Закон Стокса-Ломмеля: спектр излучения в целом и его максимум всегда сдвинуты по сравнению со спектром поглощения и его максимумом в сторону длинных волн.

Квантовый выход люминесценции определяется как отношение числа испускаемых при стационарном режиме световых квантов q_{π} к общему числу поглощенных квантов за тот же промежуток времени q_{π} :

$$\boldsymbol{B}_{\mathrm{KB}} = \boldsymbol{q}_{\mathrm{J}} / \boldsymbol{q}_{\mathrm{II}}$$

Энергетический выход люминесценции определяется как отношение энергии люминесценции к энергии возбуждения, поглощенной люминесцирующим веществом:

$$\boldsymbol{B}_{\mathrm{s}} = \boldsymbol{E}_{\mathrm{s}} / \boldsymbol{E}_{\mathrm{s}}.$$

Очевидно,

$$\boldsymbol{B}_{\boldsymbol{\vartheta}} = \boldsymbol{B}_{\boldsymbol{\mathrm{KB}}} \boldsymbol{\boldsymbol{\omega}}_{\boldsymbol{\mathrm{I}}} / \boldsymbol{\boldsymbol{\omega}}_{\boldsymbol{\mathrm{I}}}.$$

 $B_{\scriptscriptstyle 2} < B_{\scriptscriptstyle \mathrm{KB}}$ для стоксового излучения.

Затухание внутрицентровой люминесценции

Уменьшение числа возбужденных центров dN = -ANdt,

где A – вероятность излучательного перехода за единицу времени. $I \propto -dN/dt = AN,$ ln N = -At + C.

где $C = lnN_0 (N_0 - число возбужденных центров при <math>t = 0$).

Отсюда

$$N = N_0 e^{-At}$$
, (16.15)

Соответственно для интенсивности свечения в момент времени t имеем

$$I = I_0 e^{-At},$$
 (16.16)

где I₀ — интенсивность высвечивания в начальный (при t = 0) момент времени.

Закон затухания люминесценции (16.16) сохраняет силу и в случае, когда переход из возбужденных состояний в основное происходит частично безызлучательно, т. е. излучают не все молекулы, переходящие в основное состояние. Тогда

$$I = I_0 e^{-(A_0 + A_{H/0})t}, (16.17)$$

где A₀ и A_{в/0} — соответственно вероятности оптического и неоптического (безызлучательного) переходов. В результате

$$I = I_0 e^{-\frac{t}{\tau}},$$

где время затухания $\tau = 1/(A_{o} + A_{H/o})$.

Так как вероятность безызлучательного перехода $A_{\rm H/o}$ зависит от температуры, то отсюда возникает эффект температурного тушения.

Существует также эффект концентрационного тушения, связанный с тем, что за счет резонансной передачи (механизм Фёрстера-Декстера) энергия возбуждения мигрирует от центра к центру вплоть до попадания на центр тушения.

Затухание рекомбинационной люминесценции

Если N – концентрация электронов и дырок, а P – вероятность рекомбинации пары электрон-дырка за единицу времени, то $dN = -PN^2 dt.$

Отсюда

$$-1/N = -Pt + C,$$

где C = $-1/N_0$ (N_0 – концентрация электронов при t = 0).

В результате получаем

то окончательно имеем

$$I = \frac{I_0}{(1 + n_0 P t)^2}$$

Затухание люминесценции

Внутрицентровое излучение:

$$I = I_0 e^{-\frac{t}{\tau}}$$

Рекомбинационное излучение:

$$I = \frac{I_0}{(1 + n_0 P t)^2}$$

На практике иногда используют эмпирическую формулу

$$I = 1/(\alpha + \beta t)^{c}$$
.

L.S.Rohwer (Sandia National Lab.) and A.M.Srivastsva (GE Global Research Center) Development of Phosphors for LEDS

The Electrochemical Society INTERFACE, Summer 2003

ПРОБЛЕМА: эффективность преобразования электрической энергии в световую (в США 21 % электроэнергии тратится на освещение)

Лампы накаливания – 6 %

Люминесцентные лампы «дневного света» – 30 %В видимый свет преобразуется линия свечения Hg 254 нм.Переизлучающие фосфоры:в лампах первого поколения – $Ca_5(PO_4)_3(Cl,F):Sb^{3+},Mn^{2+}$ (Sb^{3+} - 480 нм, Mn^{2+} - 580 нм).В лампах второго поколения – $Y_2O_3:Eu^{3+}$ - 610 нмСеMgAl_{11}O_{19}:Tb^{3+}- 550 нмВаMgAl_{10}O_{17}:Eu^{2+} или (Sr,Ba,Ca)₅(PO₄)₃Cl:Eu²⁺ - 450 нм

Светодиоды – до 50 %.

НЕДОСТАТКИ: узкая полоса свечения и высокая направленность света.

ПУТЬ РЕШЕНИЯ: преобразование ближнего УФ-света Ga_{1-x}In_xN – светодиода (**370 нм**) в видимый с помощью кристаллофосфоров.

ПРОБЛЕМА: поиск кристаллофосфоров, возбуждающихся на данной длине волны.

Патент A.M.Srivastava and H.A.Comanzo:	$Sr_2P_2O_7$: Eu^{2+} , Mn^{2+} - 580 нм
	Sr ₄ Al ₁₄ O ₂₅ : Eu ²⁺ - 490 нм

ДРУГОЙ ПУТЬ: сочетание синего света $Ga_{1-x}In_xN$ – светодиода (460 нм) с эффективно возбуждающимися этим светом зеленым (SrGa₂S₄:Eu²⁺) и красным (SrS:Eu²⁺ или $M_2Si_5N_8$, M = Ca, Sr, Ba) кристаллофосфорами, что может дать наиболее эффективный источник белого света.

Светодиодная лампа

- СИД на основе InGaN излучает синий свет (460 нм)
- Этот свет частично поглощается люминофором (YAG:Ce)
- Поглощенный свет переизлучается в виде широкой линии в желтой области

Светодиодная лампа

Сцинтилляторы на основе Nal, Csl

Кристаллы CsI, CsI:Na, CsI:Tl широко используются для радиационного детектирования и гамма-спектроскопии.

Соединение	CsI	CsI:Na	CsI:Tl	NaI:Tl
Максимум	310	420	550	415
излучения, нм				
Время затухания, µs	0,01	0,63	0,90	0,23
Энергетический	0,7	13,6	6,0	15
выход, %				
Относительный	5	85	45	100
выход, %				
Квантовый выход,	2·10 ³	4 ·10 ⁴	3.104	5.10 ⁴
фот./МэВ				
Механические	Пласт.	Пласт.	Пласт.	Хрупк.
свойства				
Гигроскопичность	Нет	Слабая	Нет	Да

Table : Some inorganic scintillators

	density	λ	yield	τ	
		nm	ph/MeV	ns	
NaI:Tl	3.67	410	40'000	230	
BGO	7.14	480	4'000	300	
BaF2(fast)	4.88	215	1'500	<1	
BaF2(slow)	4.88	310	10'000	700	
CsI:Tl	4.51	565	65'000	600	
CsF	4.11	390	2'000	3	
PbWO4	8.28	480	200	10	
LSO:Ce	7.4	420	28'000	40	
LuAP:Ce	8.3	360	10'000	18	
GSO:Ce	6.71	440	7'500	60	
LuPO4:Ce	6.6	360	13'000	24	New scintillator
YAP:Ce	5.37	370	16'000	25	energy resolution
LaBr:Ce	5.3	360	60'000	35	2% at ≈1 MeV

BGO=Bi₄Ge₃O₁₂, GSO=Gd₂SiO₅, LSO=Lu₂SiO₅, LuAP=LuAlO₃, YAP=YAlO₃

Нанокристаллические фосфоры

Number of publications on nanocrystalline phosphors according to Web of Knowledge data

J. Almutlaq et al., *ACS Materials Lett.* 2021, 3, 290: CsMnBr₃ – новый перспективный наноразмерный кристаллофосфор с τ ~ 0.6 ns и квантовым выходом ~ 54 %.

Отличительные особенности наносцинтилляторов связаны с:

 влиянием размерных эффектов на электронный и фононный спектры,

- рассеянием и релаксацией носителей заряда на поверхности,
- аннигиляцией радиационных дефектов на поверхности.

В результате наблюдаются:

- изменения спектров возбуждения,
- изменения световыхода,
- подавление свечения автолокализованных экситонов,
- изменения кинетики затухания люминесценции,
- различные специфические эффекты, связанные с поведением активаторов.

Спектры катодолюминесценции Csl

Квантовые точки

Квантовая точка — фрагмент проводника или полупроводника, ограниченный по всем трём пространственным измерениям и содержащий электроны проводимости. Точка должна быть настолько малой, чтобы были существенны квантовые эффекты. Это достигается, если кинетическая энергия электрона $\hbar^2/(2md^2)$ (d — характерный размер точки, m — эффективная масса электрона на точке), обусловленная неопределенностью его импульса, будет заметно больше всех других энергетических масштабов: в первую очередь больше температуры, выраженной в энергетических единицах.

Коллоидные квантовые точки

Наночастицы полупроводника, покрытые стабилизатором

Требования к наночастицам

- узкое распределение по размерам,
- отсутствие агломерации,
- пассивация оборванных связей на поверхности

Требования к стабилизатору

- объемный «хвост»,
- прочная связь с поверхностью,
- сродство к растворителю

TOPO ligané

Изменение цвета (полосы испускания) коллоидного раствора частиц CdSe в оболочке ZnSe в зависимости от размера квантовых точек

11. Лазерная генерация

Закон Бугера: $I(x) = I_0 e^{-\alpha z}$

 $\alpha < 0 \rightarrow$ усиление. Как это сделать?

Рассмотрим сначала двухуровневую систему в поле световой волны.

Число спонтанных переходов в единицу времени

$$n_{21} = A_{21}n_2$$
.

Вероятности вынужденных переходов $E_1 \rightarrow E_2$ и $E_2 \rightarrow E_1$ одинаковы и характеризуются коэффициентом Эйнштейна *В* так, что

$$dI = -Bw(v)n_1hvdz + Bw(v)n_2hvdz,$$

где *dz* – толщина слоя вещества,

$$\frac{n_2}{n_1} = e^{-\frac{E_2 - E_1}{kT}}$$

Согласно Эйнштейну, коэффициенты A_{21}
иBсвязаны между собой соотношением

$$B=\frac{c^3}{8\pi h\nu^3}A_{21}.$$

Учитывая также то, что плотность энергии световой волны $w(v) = I/v_{z}$, получим

$$dI = -I \frac{c^3}{8\pi hv^3} A_{21} (n_1 - n_2) dz \cdot hv / v_2$$

Интегрирование уравнения даст закон Бугера

$$I(x) = I_0 e^{-\alpha z}$$

с коэффициентом поглощения

$$\alpha = \frac{c^3}{8\pi v^2 v_e} A_{21}(n_1 - n_2) .$$

Учет ширины уровней: $A_{21} = \int a_{21}(v) dv$
$$\bigcup$$
$$\alpha(v) = \frac{c^3}{8\pi v^2 v_e} a_{21}(v)(n_1 - n_2)$$

 $n_1 > n_2 \Longrightarrow \alpha > 0;$ Инверсная заселенность: $n_1 < n_2 \Longrightarrow \alpha < 0$ – как этого добиться?

Трехуровневая система: $A_{21} << A_{31}$; $A_{21} << A_{32}$.

Примерно такая схема уровней реализуется для Cr^{3+} в рубине (Al₂O₃). При наличии вынужденных переходов под действием света с $hv = E_3 - E_1$ со временем реализуется инверсная заселенность с $n_2 > n_1$.

Конструкция лазера:

- 1, 2 зеркала, 3 – кристалл рубина,
- 4 лампа накачки.

Зеркальный резонатор: $2Ln = m\lambda \rightarrow$ моды излучения с разными *m*, $\Delta v = c/2L$.

Свойства лазерного излучения:

- узкие спектральные моды,
- высокая направленность ($\theta \sim \lambda/D \sim$ нескольких минут),
- наличие порога генерации (- $\alpha_{\text{пор}} = \gamma/(2L)$),
- линейная зависимость мощности излучения от мощности накачки выше порога генерации,
- когерентность излучения.

Причина порога – потери, в том числе в зеркалах. После прохождения луча туда и обратно

$$I = I_0 e^{-2\alpha(\nu)L} R_1 R_2.$$

 $I > I_0$, если $R_1 R_2 e^{-2\alpha(\nu)L} > 1.$

Обозначим $R_1 R_2 = e^{-\gamma}$. Тогда условие усиления примет вид $2a(\nu)L < -\gamma,$ или $|a(\nu)| > \frac{\gamma}{2L} = -a_{nop}.$

12. Нелинейные явления

Малые $E: P = \kappa E$. Большие $E: P = \kappa E + \kappa^{(2)}E^2 + \kappa^{(3)}E^3 + \dots$ $\kappa/\kappa^{(2)} \sim \kappa^{(2)}/\kappa^{(3)} \sim E_a$. Если $E = E_0 \cos(\omega t - k_1 z)$, где $k_1 = \frac{\omega}{c}n$, то $P = \kappa E_0 \cos(\omega t - k_1 z) + \kappa^{(2)}E_0^2 \cos^2(\omega t - k_1 z) + \kappa^{(3)}E_0^3 \cos^3(\omega t - k_1 z) + \dots$

<u>Нелинейная восприимчивость первого порядка к⁽²⁾</u>

Наблюдается для пьезоэлектрических кристаллов без центра симметрии. $P^{(2)} = \kappa^{(2)} E_0^2 \cos^2(\omega t - k_1 z) = \frac{1}{2} \kappa^{(2)} E_0^2 + \frac{1}{2} \kappa^{(2)} E_0^2 \cos(2\omega t - 2k_1 z).$ $\frac{1}{2} \kappa^{(2)} E_0^2 \rightarrow$ эффект выпрямления светового поля (1962). Второй член \rightarrow колебания электронов с удвоенной частотой \rightarrow переизлученная волна $E' = E'_0 \cos(2\omega t - k_2 z),$ где $E'_0 = \frac{1}{2} \frac{\kappa^{(2)}}{\kappa} E_0^2, \quad k_2 = 2\omega/\nu(2\omega).$

Генерация второй гармоники была открыта Франкеном на кварце в 1961 г. Эффективность преобразования энергии была порядка 10⁻⁸.

Условие фазового синхронизма

 $P^{(2)}(z, t)$ и E'(z, t) должны быть синфазны, для чего требуется равенство $\kappa_2 = 2k_1$, или $2\omega/v(2\omega) = 2 \cdot \omega/v(\omega)$, откуда $v(\omega) = v(2\omega)$ и, соответственно, $\underline{n(\omega) = n(2\omega)}$.

Фазовый синхронизм может быть получен за счет оптической анизотропии. Обычно для этого используется дигидрофосфат калия (KDP).

Поверхности нормалей для первой и второй гармоник кристалла КDP. Фазовый синхронизм наблюдается под углом θ_0 к оптической оси *z*.

<u>Нелинейная восприимчивость второго порядка к⁽³⁾</u>

$$P = \kappa E_0 \cos(\omega t - k_1 z) + \kappa^{(3)} E_0{}^3 \cos^3(\omega t - k_1 z) =$$

= $\kappa' E_0 \cos(\omega t - k_1 z) + {}^3/_4 \kappa^{(3)} E_0{}^3 \cos(3\omega t - 3k_1 z)$, где $\kappa' = \kappa + {}^3/_4 \kappa^{(3)} E_0{}^2$.
Первый член приводит к новому коэффициенту преломления:
 $n^2 = \varepsilon' = 1 + 4\pi\kappa' = 1 + 4\pi\kappa + 3\pi\kappa^{(3)} E_0{}^2 = \varepsilon_0 + \varepsilon_2 E_0{}^2$, где $\varepsilon_2 = 3\pi\kappa^{(3)}$;
 $n = \sqrt{\varepsilon_0 + \varepsilon_2 E_0{}^2} = n_0 \sqrt{1 + \frac{\varepsilon_2}{n_0{}^2} E_0{}^2} \approx n_0 + \frac{\varepsilon_2}{2n_0{}^2} E_0{}^2 = n_0 + n_2 E_0{}^2$, где $n_2 = \frac{\varepsilon_2}{2n_0{}^2}$

Самофокусировка света

 $n_2 > 0 \rightarrow \Delta n = n_2 E_0^2 > 0 \rightarrow$ возможно полное внутреннее отражение от границ лазерного луча.

$$sin \varphi_{\text{пред}} = \frac{n_0}{n_0 + n_2 E_0^2} = cos \beta_{\text{пред}};$$

 $\beta_{\text{пред}} = arc \cos \frac{n_0}{n_0 + n_2 E_0^2}.$

Дифракция на диаметре лазерного луча, равном 2а:

$$\beta_{\rm d} = 0.61 \frac{\lambda_0}{2an_0} = 0.61 \frac{\lambda}{2a}.$$

 $\beta_{\mathcal{A}} > \beta_{пред}$ - расходящийся пучок света, $\beta_{\mathcal{A}} = \beta_{пред}$ - каналирование, $\beta_{\mathcal{A}} < \beta_{пред}$ - самофокусировка (сжатие пучка в нить диаметром порядка длины волны).

$$\begin{cases} \mathcal{C}_{M} \mathcal{B}_{npeg} = \frac{1}{1 + \frac{n_{\pi}}{n_{o}} E_{o}^{2}} \approx 1 - \frac{n_{\pi}}{n_{o}} E_{o}^{2} \\ \mathcal{C}_{M} \mathcal{B}_{npeg} \approx 1 - \frac{\mathcal{B}_{npeg}^{2}}{2} \\ \frac{1}{2} \mathcal{B}_{npeg}^{2} = \frac{n_{2}}{n_{o}} E_{o}^{2} \\ \mathcal{I}_{Coolsne} \text{ kasta supportances}: \\ \frac{n_{2}}{n_{o}} E_{o}^{2} = \frac{1}{2} \mathcal{B}_{a}^{2} = \frac{(0.61\lambda)^{2}}{8\alpha^{2} n_{o}^{2}} = \frac{(0.61\lambda)^{2}}{8\alpha^{2}}, \quad (*) \\ \mathcal{I}_{g}e \lambda = \frac{\lambda_{o}}{n_{o}}, \lambda_{o} - granna \text{ bounses l baryyone} \\ I = \frac{c}{495} \sqrt{\varepsilon} E^{2} = \frac{c}{8\pi} n_{o} E_{o}^{2} \\ \mathcal{M}_{ouppoc} \text{ mode hyperson } W = I \cdot \Re \alpha^{2} = \frac{c n_{o}}{8\pi} E_{o}^{2} \Re \alpha^{2} \\ \overline{n_{o}gcrabed} E_{o}^{2} u_{g}(*), noughuse} \\ W_{nopoc} = \mathcal{A} \frac{\chi_{o}^{2}}{n_{2}}, \quad uge \mathcal{A} = \frac{0.61^{2}c}{69} \\ \mathcal{B}_{nevoroptex} \text{ kyucra wax } W_{nopoc} < 10 \text{ br.} \end{cases}$$