

IX. Диамагнетизм и парамагнетизм

(Киттель – гл. 15)

- 9.1. Диамагнетизм Ланжевена
- 9.2. Парамагнетизм Ланжевена
- 9.3. Квантовая теория парамагнетизма
- 9.4. Парамагнитная восприимчивость электронов проводимости

Вспомним магнитные физические величины.

Индукция *В* – силовая характеристика магнитного поля.

Намагниченность $M = \sum \mu_i / V$, где μ_i – магнитные моменты отдельных атомов, V – объем тела.

Напряженность $H = B/\mu_0 - M$.

Магнитная восприимчивость $\chi = M/H$.

Магнитная проницаемость $\mu = \mathbf{B}/(\mu_0 \mathbf{H}) = \mu_0 (\mathbf{H} + \mathbf{M})/(\mu_0 \mathbf{H}) = 1 + \chi$.

9.1. Диамагнетизм Ланжевена

Результатом влияния магнитного поля на орбиту электрона в атоме является прецессия орбиты вокруг оси, проходящей через ядро атома параллельно вектору магнитной индукции, с угловой скоростью

 $\mathcal{W}_{L} = \frac{\ell B}{2m_{e}} = \frac{w_{e}}{2} \quad (\text{racmoma lapuopa}).$ $\mathcal{V}_{L} = \frac{w_{L}}{2\pi}$

Probabarenmenter mor Z surmpourd b amoue $I = -ZeV = -Ze \cdot \frac{eB}{475 m_e}$

cozgacm mannenten moment $\mu_e = I \cdot \pi \langle S^2 \rangle = - \frac{Ze^2 B}{4 m_e} \langle S^2 \rangle,$

ge < 52> - crequin bagpan paguyca suertportetos opérande ernocuteuro ecu Z, naparileuro B.

due mperauephon sexpansion operarie 5<52> = <202> + < y2> (<72) = <222> + <42> + <22> - cpegrent klagpas paguyca mentponnon opentare athouteron Bayrae copepureera - commetpurchoro pacapege -repura suerespondent motroctar (2 - opdutaris) <2e2>=<y2>=<z2>, morga <52>=2<22>. Rockarbey quanarmeture navareurubareurur onexels curado, To H ~ B $\chi = \frac{M}{H} \approx \frac{M}{B/\mu_0} = \frac{\mu_0 N \mu_e}{B}, ge N - Kengenegaguer$ Tour negemandere de nougrue opopuigny tourcebena $\chi = -\frac{\mu N Z e^2}{6 m_0} < \tau^2 >$

9.2. Парамагнетизм Ланжевена

Парамагнетизм возникает, когда атомы имеют собственный магнитный момент μ_J . В магнитном поле такой магнитный момент будет иметь энергию $U = -\mu_J B = -\mu_J B \cos \theta$. Эта энергия будет минимальна, когда магнитный момент направлен вдоль поля ($\theta = 0$), однако такой ориентации препятствуют тепловые колебания.

Намагниченность материала будет определяться суммой проекций магнитных моментов атомов на направление магнитного поля:

$$M = \frac{1}{V} \sum_{i} \mu_{j} \cos \theta_{i} = N \mu_{j} \langle \cos \theta \rangle$$

$$(N - \kappa on y e k y august a mound).$$

$$\langle \cos \theta \rangle = \frac{\int \ell^{-} \frac{1}{k \sigma T} \cos \theta d \Omega}{\int \ell^{-} \frac{1}{k \sigma T} d \Omega}$$

$$d\Omega = Ain \theta d\theta d\theta$$

$$V = \frac{\pi}{2\pi} \int_{CO2}^{\pi} \frac{\mu_{FB} \cos \theta}{K_{BT}} \cos \theta d\theta$$

$$\langle \cos \theta \rangle = \frac{2\pi}{2\pi} \int_{CO2}^{\pi} \frac{\mu_{FB} \cos \theta}{K_{BT}} \sin \theta d\theta$$

Baneka nepemenkeux:
$$s = \cos\theta$$
, $x = \frac{\mu s B}{k_B T}$.
 $\langle \cos\theta \rangle = \frac{\int e^{4x} dx}{\int e^{4x} dx} = \frac{d}{ds} \ln \int e^{4x} dx = \frac{\int e^{4x} dx}{\int e^{4x} dx} = \frac{d}{ds} \ln \int e^{4x} dx = \frac{\int e^{4x} dx}{\int e^{4x} dx} = \frac{e^{x} + e^{-x}}{\int e^{x} - e^{-x}} - \frac{1}{x}$
Eynkyna eth $x = \frac{e^{x} + e^{-x}}{e^{x} - e^{-x}}$ nagabaemer runep-
Ganerickum komaniekcom.
 $\underline{L(x)} = \operatorname{eth} x - \frac{1}{x} - \operatorname{epopulyna}$ Janmebena.
 $\underline{M} = N\mu_{5}L(x) - \operatorname{populyna}$ Janmebena.

the
$$x \approx \frac{1}{x} + \frac{x}{3} - \frac{2c^3}{45} + \dots$$

Eau $x \ll 1$, no $L(x) \approx \frac{x}{3}$. Torga
 $\mathcal{M} \approx \frac{\mathcal{N}\mu_{T}^{2}B}{3k_{B}T} \approx \frac{\mathcal{N}\mu_{T}^{2}\mu_{O}H}{3k_{B}T}$
 $\chi = \frac{C}{T} - 300000 \text{ Kropu (boundaretex)}$
 $\eta_{U} = \frac{\mu_{T}B}{K_{B}T} \ll 1),$
Ige nockashinan Kropu - Beticca
 $C = \mu_{0} \frac{\mathcal{N}\mu_{T}^{2}}{3k_{B}}$.
The nuzeux Tu daubuan $B(To \text{ ecuts npu } \frac{\mu_{T}B}{k_{B}T} \gg 1)$
 $L(x) \rightarrow 1, a \mathcal{M} \xrightarrow{B \rightarrow \infty} \mathcal{N}\mu_{T} - \exists paperum nacouyeusa}$

Рис. 15.2. Графики магмомента как нитного функции отношения В/Т для сферических образцов; I — хромо-калиевые II — железо-амквасцы. мониевые квасцы, 111-сульфат гадолиния (октагидрат). Намагниченсоставляющая пость, 99,5% от насыщения, достигается при 1,3°К в поле 50 кГс. (Из работы Генри [5].)

9.3. Квантовая теория парамагнетизма

Illeneps dygem ne grynnywir Nanniebena, a opynergue Tymensome By (sc): $\mathcal{M} = \mathcal{N}_{g} \mathcal{J}_{\mathcal{H}_{B}} \mathcal{B}_{\mathcal{J}}(\boldsymbol{x}),$ rge x = grubb, $M_{B} = \frac{eh}{2m_{o}} = 9,27 \cdot 10^{-24} \frac{Dme}{T_{o}} - uarminumptum usurenum$ ded agnoro sucumpona, razpelacuous narvetonon Fapa, J - nameae bryzpennee stantabae rucio amaria, $B_{J}(x) = \frac{2J+1}{2T} cth \frac{2J+1}{2T} cth \frac{2J+1}{2T} - \frac{1}{2T} cth \frac{x}{2T}$ $qrammop \ large \ g = 1 + \frac{J(J+1) + J(J+1) - L(L+1)}{2J(J+1)}$ Sul - coundre a gramanore klanzabore rucia amoma, constructionen Bregguotate M(B->co) > Ng JUB.

9

Bjakone Knopu npu mon betaem T.H. Hoppertubulit
warmutnout warenum
$$M_J = g \sqrt{J(J+1)} M_B$$
:
 $\chi = \frac{C}{T}$, ye $C = M_0 \frac{M_{H_T}^2}{3K_B}$.

Для одноэлектронного атома с электроном в *S*-состоянии ($J = S = \frac{1}{2}$) эффективный магнитный момент $\mu_J = \sqrt{3}\mu_B$.

Однако лучше всего теория работает для редкоземельных ионов, за исключением Eu^{3+} . Этот ион имеет немагнитное основное состояние (терм 7F_0 с J = 0) и характеризуется температурнонезависимым парамагнетизмом Ван Флека за счет примешивания более высоких уровней *L-S*-мультиплета (с другими *J*).

В случае переходных элементов орбитальные магнитные моменты в твердом теле «замораживаются», магнетизм определяется спиновым магнитным моментом

$$\mu_{S} = 2 S(S+1) \mu_{B}$$
.

10

9.4. Парамагнитная восприимчивость электронов

проводимости

Quermpon: 1=1, Me=2VA(1+1) MB=V3MB, $\chi = \frac{C}{T} = \mu_0 \frac{N\mu_e^2}{3KT} = \mu_0 \frac{N\mu_e^2}{KT}$, rmo coombetablyen nacearnurenracmu M = Mue B Byenesburennoemn nawarnurubaemer mul costeraterino $\mathcal{M} \approx \frac{N_{\mu B}}{K_{0}T} \cdot \frac{T}{T} = \frac{N_{\mu B}}{k_{0}T} \cdot \frac{B}{B} = \frac{N_{\mu B}}{E} B$ $\chi \approx \frac{M}{B/\mu_0} \implies \chi = \mu_0 \frac{N \mu_0^2}{E}$ Mu X re zabucsem em mennepatypor!

Более точный расчет с учетом функции распределения Ферми-Дирака и диамагнетизма Ландау ничего не меняет. 11

Главные выводы

- 1. Материал может иметь как диамагнитный, так и парамагнитный отклик на внешнее магнитное поле.
- 2. Парамагнетизм, если он есть, обычно преобладает над диамагнетизмом. Магнитная восприимчивость парамагнетиков следует закону Кюри $\chi = C/T$, где константа Кюри-Вейсса *C* пропорциональна концентрации магнитных атомов и квадрату их магнитного момента.

Магнитные материалы могут находиться также в магнитоупорядоченном состоянии, но об этом ниже.

Введение в физику твердого тела

Х. Ферромагнетизм и антиферромагнетизм

(Киттель – гл. 16)

- 10.1. Природа магнитного упорядочения
- 10.2. Особенности ферримагнетиков
- 10.3. Антиферроматнетики
- 10.4. Ферромагнитный гистерезис

Рис. 16.1. Возможные типы упорядочения электронных спинов.

Причина магнитного упорядочения – обменное взаимодействие электронных оболочек, энергия которого в модели Гейзенберга (1928 г.) описывается выражением

$$U_{ij} = -2J_{ij}S_iS_j$$
, (1)

где J_{ij} – обменный интеграл, а $S_{i(j)}$ – спиновый момент импульса электронной оболочки атома с номером i(j) (по умолчанию предполагается, что магнетизм материала связан именно со спиновыми магнитными моментами электронных оболочек, как это имеет место для переходных *d*-элементов). ¹⁴ Обменный интеграл J_{ij} зависит от расстояния между атомами *i* и *j*, однако во многих случаях можно ограничиться рассмотрением обменного взаимодействия каждого атома с Z ближайшими соседями, характеризуемого одним единственным параметром J. Если J > 0, то при достаточно низких температурах (ниже температуры Кюри) будет возникать ферромагнитный тип упорядочения магнитных моментов, а если J < 0 – то антиферромагнитный. В обоих случаях упорядочение будет приводить к понижению энергии обменного взаимодействия (1).

Рис. 16.25. Характер спинового упорядочения в ферромагнетике (обменный интеграл J > 0) и в антиферромагнетике (J < 0).

В результате обменного взаимодействия на атомный спин S действует некая сила со стороны соседей, поле которой называется обменным или молекулярным. Будем, подобно магнитному полю, характеризовать его вектором индукции B_E , хотя обменное поле и не является магнитным.

В приближении среднего обменного (молекулярного) поля Вейсса

 $\vec{B}_{E} = \mathcal{X} \mu_{O} \mathcal{M}$, Ige λ - постоящимая среднего поих $\left(\lambda = \frac{2JZ}{Ng^2\mu_B^2}\right)$. В резулитате в параманитной дразе (то есть при $T > T_c$) $\overline{\mathcal{M}} = \chi_p (\overline{B} + \overline{B_c})/\mu_o$, $ge \chi_p - обычная параманитная восприми-$ чивость.

$$\begin{split} \chi_{p} &= \frac{C}{T} \quad \left(\mathcal{C} - \operatorname{kokemanna} \operatorname{Fiopu-Beineral} \right) \\ \mu_{o} \mathcal{M} &= \mathcal{C} \left(\mathcal{B} + \lambda_{c} \mu_{o} \mathcal{M} \right) \\ \mu_{o} \mathcal{M} &= \frac{\mathcal{C} \mathcal{B}}{T - \mathcal{C} \lambda} \\ \chi &= \frac{\mathcal{M}}{\mathcal{H}} \approx \frac{\mathcal{M}_{o} \mathcal{M}}{\mathcal{B}} = \frac{\mathcal{C}}{T - \mathcal{C} \lambda} \\ \operatorname{Torugreence} \operatorname{zakok} \operatorname{Kropu} - \operatorname{Beinerea} \\ \left[\chi = \frac{\mathcal{C}}{T - T_{c}} \right], \operatorname{rge} T_{c} = \mathcal{C} \lambda - \\ \operatorname{meunopamypa} \operatorname{Kropu} \\ \operatorname{Bonounnue} \operatorname{gropnuyuy}(\mathbf{k}): \quad \left(= \mu_{o} \frac{\mathcal{M}_{\mu_{r}}^{2}}{3K_{B}} \right) = \\ \lambda &= \frac{T_{c}}{\mathcal{C}} = \frac{3k_{B}T_{c}}{\mathcal{M}_{s}}, \operatorname{rge} \mu_{s} = g \operatorname{VS}(s+1) \operatorname{M}_{B}. \end{split}$$

By guicenburgeret karnen wone en dernis

$$\chi = \frac{C}{(T-T_c)^{1.3}}$$
 you nugere mennepatypose
 $u \left[\chi = \frac{C}{T-O}\right]$ you $T \rightarrow \infty$ (zanon Fraque-
Beticca, roje bewerena O nazochaemca naparian -
numeous tennepamypour Fraque).
Teopennoceccu $O = const \cdot S \not{Z}_i J_i$, ye $\not{Z}_i - ucuo$
coegnusc narnumeous nonob us $i - koopyunayeonnost$
coegnusc narnumeous nonob us $i - koopyunayeonnost$
copept, const $= \frac{2mo}{3'k_0} S'(S+1)$.
Bogeppenarmetukase $O = O(O > T_c > O)$,
b annuogepponarmetukase $O < O$.

Boppmannumkan gaze (nu T = Tc) M = Ng SMB B5 (20), (**) 29e Bo (20) - opynkyne Topungora, $\mathbf{x} = g \underbrace{S}_{K} \underbrace{B}_{E} \underbrace{B+B_{E}}_{K}$ Thak kak $B_{E} = \lambda \mu_{0} \mathcal{M}$, mo namerenkack \mathcal{M} Excogum u Brebyro, u Brynabyro ractu ypabnenera (* *). B pezquestate, narage II uz (**), noneno ygalnetbequireneno onucamo zabucunento M(T) npu T<Te, za ucknorennen renneparyp T << Tc, ze paznusa All = M(0) - M(T) anazorbaretar nemeno Sentrue: AM CST32 - Zarbone T32 Brosca. Gurenburenne navannevernochu M(T) npu nuzkus mennepamypass npaucsogum uz-za npucytetbue cnunobus bout.

Рис. 16.4. Намагниченность насыщения никеля как функция температуры. Сплощная кривая — теоретическая для случая S = 1/2, построенная на основе теории усредненного поля. Экспериментальные точки приведены по измерениям Вейсса и Форера [8].

Рис. 16.9. Спиновая волна в линейной цепочке спинов. а) Вид цепочки спинов в перспективе (сбоку). б) Вид цепочки спинов сверху; показана длина волны. Волна изображена линией, проходящей через концы спиновых векторов.

Энергия магнонов квантуется : $\mathscr{E}_k = n_k \hbar \omega_k$, где $\hbar \omega_k = 4JS(1 - \cos ka)$, *k* – волновое число, *a* – постоянная решетки.

Спектр магнонов определяется методами, связанными с дифракцией нейтронов в кристалле.

10.2. Особенности ферримагнетиков

Классический пример – магнетит $Fe_3O_4 = FeO \cdot Fe_2O_3$ со структурой обращенной шпинели.

Рис. 16.17. Схема спиновых моментов в магнетите $\text{FeO} \cdot \text{Fe}_2\text{O}_3$, показывающая, как компенсируют друг друга спины ионов Fe^{3+} . Остаются нескомпенсированными лишь спиновые моменты ионов Fe^{2+} . Различие типов узлов (здесь A и B) поясняется ниже на рис. 16.19.

К ферримагнетикам относится также множество ферритов типа $MO \cdot Fe_2O_3$, где M – двухвалентный ион (M = Fe, Ni, Co, ...). В ферритах со структурой нормальной шпинели магнитные ионы M^{2+} находятся в тетраэдрических узлах (A), а Fe³⁺ - в октаэдрических узлах (B).

Средние обменные поля, действующие в узлах A и B, связаны разными константами (λ , λ_A , λ_B) с намагниченностями разных подрешеток и описываются, соответственно, следующими формулами:

$$\begin{cases} \frac{1}{\mu_{e}} \vec{B}_{A} = -\lambda_{A} \vec{M}_{A} - \lambda \vec{M}_{B} \\ \frac{1}{\mu_{e}} \vec{B}_{B} = -\lambda \vec{M}_{A} - \lambda_{B} \vec{M}_{B} \\ quere B_{B} = -\lambda \vec{M}_{A} - \lambda_{B} \vec{M}_{B} \\ quere B_{B} = -\lambda \vec{M}_{A} - \lambda_{B} \vec{M}_{B} \\ \frac{1}{2} (pegnaa nog flynn nog pennemkann nuomkache
meprime Gausenagenetburk
$$\mathcal{U} = -\frac{1}{2} (\vec{B}_{A} \vec{M}_{A} + \vec{B}_{B} \vec{M}_{B}) = \mu_{o} (\frac{1}{2} \lambda_{A} \vec{M}_{A}^{2} + \lambda \vec{M}_{A} \vec{M}_{B} + \frac{1}{2} \lambda_{B} \vec{M}_{B}^{2}).$$
Ecur $\lambda \vec{M}_{A} \vec{M}_{B} > \frac{1}{2} (\lambda_{A} \vec{M}_{A}^{2} + \lambda_{B} \vec{M}_{B}), \text{ mo numerized } \mathcal{U}$
Sygem upon $\vec{M}_{A} \vec{M}_{B} \cdot \frac{1}{2} (\lambda_{A} \vec{M}_{A}^{2} + \lambda_{B} \vec{M}_{B}), \text{ mo numerized } \mathcal{U}$$$

Havencer meneps 24 = 28 = 0, morga $\int \frac{1}{u_0} \vec{B}_A = -\lambda \vec{M}_B$ $\int_{\mathcal{A}} \overline{B}_{B} = -\lambda \overline{\mathcal{A}}_{A}$ Is napareasuremnon co-cmosum $\int \mathcal{M}_{B} = \chi_{B} \frac{B + B_{B}}{\mu_{0}} = \frac{C_{B}}{T} \frac{B + B_{B}}{\mu_{0}}$ $\mathcal{U}_{t} = \chi_{t} \frac{B + B_{t}}{\mu_{o}} = \frac{C_{t}}{T} \frac{B + B_{t}}{\mu_{o}}$ $\int \mathcal{M}_{B} \mathcal{M}_{B} T = C_{B}(B - \mathcal{M}_{B} \mathcal{M}_{B})$ $\mathcal{M}_{B} T = C_{B}(B - \mathcal{M}_{B} \mathcal{M}_{A})$

$$\begin{aligned} & T \mathcal{M}_{4} + \lambda C_{4} \mathcal{M}_{B} = \frac{C_{4}B}{\mathcal{M}_{0}} \\ & \lambda C_{B} \mathcal{M}_{4} + T \mathcal{M}_{B} = \frac{C_{6}B}{\mathcal{M}_{0}} \\ & \mathcal{P}_{emenne} npn B = 0 dyget ognariate natherne of generation of permetation of permetation of permetation of permetation of permetation of permetation of the p$$

Рис. 16.20. Температурная зависимость обратной восприимчивости 1/х магиетита (FeO·Fe₂O₃) выше точки Кюри.

Рис. 16.21. Экспериментальные кривые намагниченности насыщения (выраженной в магнетонах Бора на формульную единицу) как функции температуры для ряда ферритов-гранатов (по Потене). Формульная единица — это M_3 Fe₅O₁₂, где M — ион трехвалентного металла.

10.3. Антиферромагнетики

Температурная зависимость магнитной восприимчивости в случаях разного магнитного порядка

Type
$$C_A = C_B$$
 breacto $(* * *)$ dygen unetto
 $\chi = \frac{2(T-2\pi)^2}{T^2 - (\pi C)^2} = \frac{2C}{T+\pi C}$, une
 $\chi(T) = \frac{C'}{T+T_N}$, $2ge C' = 2C$,
a meninepatype fleerer $T_N = \pi C$.
Type $T \to \infty$ $\chi = \frac{C'}{T-\Theta}$, $2ge \Theta < 0$.
Pacanotypine meneps temperatype $T < T_N$.
Eccur B II occu ynopsystement, mo χ , $T \to 0$, a b
otepis curritor B happabience opcentaigue moment
(markon ctorto $\perp B$.

Even
$$\vec{B} \perp cen ynopsogorenur, Ro na marnurenkactu
nogpenvemok \vec{M}_{4} u \vec{M}_{8} horwnaws noboparubast ca b
cwopony \vec{B} :
 \vec{M}_{4}
 $\vec{M}_{8} = -\vec{B}(\vec{M}_{4} + \vec{M}_{8}) \approx$
 $\approx -\mu_{0} \lambda M^{2} [1 - \frac{1}{2} \cdot (2\varphi)^{2}] - 2BM9$
 $dM = 0 \iff 4 \mu_{0} \lambda M^{2} \varphi - 2BM = 0$
 $\vec{\varphi} = \frac{B}{2\mu_{0}\lambda M}$
 $\chi_{\perp} = \frac{\mu_{0}M_{\perp}}{B} = \mu_{0} \cdot \frac{2M\varphi}{B} = \frac{1}{\lambda} = \frac{C}{T_{N}}$$$

Рис. 16.28. Магнитная восприимчивость антиферромагнетика MnF_2 вдоль (χ_{\parallel}) и перпендикулярно (χ_{\perp}) тетрагональной оси. (S. Foner.)

10.4. Ферромагнитный гистерезис

Рис. 16.37. Происхождение доменов.

Рис. 16.31б. Типичная кривая намагничивания. На каждом из участков кривой (отделенных друг от друга пунктирными линиями) доминирует один из процессов памагничивания: нижний участок обратимое смещение границ доменов; средний участок — необратимое смещение границ доменов; верхний участок — поворот векторов намагниченности доменов в направлении поля.

Кривая гистерезиса

Рис. 16.33. Кривые намагничивания монокристаллов железа, никеля и кобальта. Из кривых для железа следует, что направлением легкого намагничивания является [100], а трудного — [111]. В_а — внешнее поле. (По Хонда и Кайя.)

Причина магнитной анизотропии кристаллов кроется в существовании энергии магнитокристаллической анизотропии U_k , которая, в свою очередь, связана с формой электронных орбит и их взаимодействием с решеткой. Для кобальта (гексагональная структура) $U_k = K_1 \sin^2 \theta + K_2 \sin^4 \theta$, где θ – угол между вектором намагниченности M и гексагональной осью легкого намагничивания. В железе $U_k = K_1(\alpha_1^2\alpha_2^2 + \alpha_2^2\alpha_3^2 + \alpha_3^2\alpha_1^2) + K_2\alpha_1^2\alpha_2^2\alpha_3^2$, где α_1 , α_2 , α_3 – направляющие косинусы M относительно ребер кубической ячейки. При $T \to T_c$ K_1 и $K_2 \to 0$.

Толщина и энергия переходной стенки между доменами

Рис. 16.36. Схема, иллюстрирующая ход изменения направления спинов в стенке Блоха (переходном слое) между доменами с противоположными направлениями намагниченности. Толщина переходного слоя в железе — порядка 300 постоянных решетки.
Ean gavennañ cienka y Naraunsse waeb, mo
npu nepezoge k coregneny anony bertap II dygen
noboparubaro ca na yran
$$\varphi = \frac{\pi}{N}$$
. Odvennañ snepruñ
gud coregnis arouab
 $w_{ex} = -2JJ_1J_2^2 = -2JS_1S_2 calf \approx w_0 + JS^2\varphi^2$
 $\Delta w_{ex} = J_S^2 \varphi^2 = JS^2 \frac{\pi^2}{N^2}$.
dua yenorku y Naraub $\Delta w_{ex} = JS^2 \frac{\pi^2}{N}$. Ha egu-
ning managu ciensu muzogutas $\frac{1}{2}$ arounist yenorek,
nostemy sneprus equinaga mangagu crenku ou odwennor
ljouwogeverbud $\overline{\sigma}_{ex} = \frac{\pi^2}{Na^2}$.
Dreprus anuzotponu $\overline{\sigma}_{anis} \approx k Na (k - kouchanta
anuzotponu, Na - Towyma ciena).
Taukar sneprus egunage norgan cienen
 $\overline{\sigma}_w = \overline{\sigma}_{ex} + \overline{\sigma}_{nis} \approx \frac{\pi^2 JS^2}{Na^2} + k Na$$

$$\frac{d\sigma}{dV} = 0 \implies -\frac{\pi^2 J S^2}{V^2 a^2} + k\alpha = 0$$

$$N = \sqrt{\frac{\pi^2 J S^2}{K a^3}} = \pi S \sqrt{\frac{J}{K a^3}} \quad (nywwepne 300 great nearlya)$$

$$Omenoga \quad \overline{\nabla_w} = 2\pi S \sqrt{\frac{KJ}{\alpha}} \quad .$$

Эта энергия приводит к тому, что наноразмерные частицы становятся монодоменными.

Самая высокая коэрцитивная сила H_c получается в мелкозернистых (со второй фазой) и нанозернистых сплавах. При этом однодоменные наночастицы перемагничиваются целиком, преодолевая магнитокристаллическую анизотропию и анизотропию формы.

Низкая коэрцитивная сила получается, наоборот, при отсутствии в ферромагнетиках примесей и напряжений.

Магнитные материалы

Зависимость коэрцитивной силы от размера зерна для магнитомягких сплавов (G. Herzer, *IEEE Trans. Mag.* 26 (1990) 1337)

Главные выводы

- 1. Магнитные материалы могут иметь разные типы магнитного упорядочения.
- 2. Выше температуры магнитного упорядочения магнитную восприимчивость можно приближенно описывать с помощью закона Кюри-Вейсса.
- 3. Ниже температуры Кюри ферромагнетики и ферримагнетики приобретают спонтанную намагниченность; при их перемагничивании наблюдается магнитный гистерезис.
- 4. Наибольшую коэрцитивную силу имеют нанозернистые ферроили ферримагнетики, зерна которых являются монодоменными.

XI. Дефекты в кристаллах

(Киттель – гл. 19, 20, Гуревич – гл. 4)

11.1. Классификация дефектов

- 11.2. Точечные дефекты
- 11.3. Дислокации

11.1. Классификация дефектов

- Точечные дефекты: вакансии, междоузлия, примеси замещения и внедрения.

- Линейные дефекты: дислокации краевые и винтовые.

- Плоскостные дефекты: дефекты упаковки (то есть нарушения в чередовании кристаллографических плоскостей), границы двойников, малоугловые границы.

- Объемные дефекты: поры, трещины, включения, скопления точечных и линейных дефектов, области напряжений.

11.2. Точечные дефекты

Вакансии, междоузлия, примеси замещения и внедрения.

Дефекты Шоттки: атом уходит на поверхность, на его месте остается вакансия. Образование дефектов Шоттки приводит к понижению плотности кристалла.

Дефекты Френкеля: образование междоузлия и вакансии. Плотность кристалла при этом не меняется.

Рис. 19.3. Схема, иллюстрирующая образование дефекта по Шоттки и дефекта по Френкелю в ионном кристалле. Стрелками показано направление смещения ионов. При образовании дефекта по Шоттки ион передвигается к поверхности кристалла; при образовании дефекта по Френкелю ион перемещается в междоузлие. 43 Точечные дефекты в том или ином количестве присутствуют в кристалле всегда. При достаточной величине диффузии с течением времени достигается термодинамически равновесная концентрация точечных дефектов.

Расчет равновесной концентрации для вакансий **по Шоттки.** *N* – число узлов кристаллической решетки в единице объема, *n* – концентрация вакансий,

N – *n* – число атомов в единице объема кристалла.

Bepartmeess adpayabanus barancus

$$\frac{n}{N-n} = \ell^{-\frac{E_V}{K_0T}}$$
 (parapegerenne Transvara),
ge E_V -meprus borrage amoma na nobeprenacto.
 $n << N \implies n \approx N \ell^{-\frac{E_V}{K_0T}}$.

Для дефектов по Френкелю

 $n \approx \sqrt{NN'} \ell^{-\frac{E}{2K_BT}}$

где N – общее число узлов в единице объема решетки, N' – число междоузельных позиций, E_I – энергия, необходимая для перемещения атома в междоузлие.

Могут образовываться также пары вакансий в разных подрешетках ионного кристалла.

Точечные дефекты приводят к резкому росту ионной проводимости. Если E_p – энергия образования пары вакансий, а E_a – активационный барьер диффузии, то

5 cop - KBT

В результате взаимодействия вакансий с электронами могут образовываться более сложные дефекты. Так, например, отжиг NaCl в парах Na приводит к образованию *F*-центров желтой окраски: вакансия Cl + электрон = *F*-центр.

11.3. Дислокации

Это – неравновесные дефекты, которые могут быть убраны путем отжига, хотя и не до конца. Различают краевые дислокации, связанные с лишней полуплоскостью атомов, и винтовые.

Винтовая дислокация

Рис. 4.1. Краевая (a) и винтовая (b) дислокации. Жирной линией показан контур, по которому обходится дислокация. d — вектор, направленный вдоль дислокации; b — вектор Бюргерса

Дислокации характеризуются вектором Бюргерса *b*.

Вектор Бюргерса – это вектор длиной в одну или несколько основных трансляций кристалла, соединяющий начальную и конечную точки контура, по которому обходится дислокация, и который был бы замкнут, если бы дислокации не было.

Для краевой дислокации вектор Бюргерса перпендикулярен ее оси, для винтовой – параллелен оси.

Из цепочки краевых дислокаций может быть образована молоугловая граница блоков (см. следующий слайд). Угол разориентации блоков

$$\theta \approx b/D$$
,

где *b* – длина вектора Бюргерса, а *D* – расстояние между краевыми дислокациями.

Винтовая дислокация может быть связана с механизмом роста кристалла.

Рис. 20.11. Граница зерен с малым углом разориентировки: (По Бюргерсу.)

Рис. 20.22. Микрофотография гексагональной спирали роста в кристалле SiC, Высота ступеньки 165 А. (А. R. Verma.)

Главные выводы

1. Точечные дефекты могут быть как равновесными, так и неравновесными.

2. Различают точечные дефекты по Шоттки и по Френкелю.

3. Точечные дефекты приводят к росту ионной, а в некоторых случаях – также и электронной проводимости кристаллов.

4. Различают краевые и винтовые дислокации. Из цепочки краевых дислокаций может быть образована молоугловая граница блоков. Винтовая дислокация может быть связана с механизмом роста кристалла.

5. Дислокации характеризуются вектором Бюргерса. Для краевой дислокации вектор Бюргерса перпендикулярен ее оси, для винтовой – параллелен оси.

XII. Оптические свойства твердых тел. Люминесценция

(Киттель – гл. 18)

- Отражение
- Преломление
- Поглощение
- Рассеяние
- Оптическая активность
- Эффект Фарадея и другие магнито- и электрооптические эффекты
- Люминесценция
- Лазерная генерация
- Нелинейная оптика

1. Люминесценция

Люминесценция – это излучение, представляющее собой избыток над тепловым излучением тела и продолжающееся в течение времени, значительно превышающего период световых колебаний.

Фотолюминесценция, катодолюминесценция, электролюминесценция, радиолюминесценция, рентгенолюминесценция, хемилюминесценция, ...

Внутрицентровые переходы

Правила отбора для электродипольных переходов:

Кристаллическая структура и спектры люминесценции NaLuO₂:Eu³⁺ (а) и NaGdO₂:Eu³⁺ (б).

Люминофор с Ce³⁺

Рекомбинационное излучение

Антистоксово излучение

hv' > hv!

Квантовый выход люминесценции определяется как отношение числа испускаемых при стационарном режиме световых квантов q_{π} к общему числу поглощенных квантов за тот же промежуток времени q_{π} :

$$\boldsymbol{B}_{\mathrm{KB}} = \boldsymbol{q}_{\mathrm{J}} / \boldsymbol{q}_{\mathrm{II}}$$

Энергетический выход люминесценции определяется как отношение энергии люминесценции к энергии возбуждения, поглощенной люминесцирующим веществом:

$$\boldsymbol{B}_{\mathrm{s}} = \boldsymbol{E}_{\mathrm{s}} / \boldsymbol{E}_{\mathrm{s}}.$$

Очевидно,

$$B_{\mathfrak{H}} = B_{\mathsf{KB}} \, \omega_{\mathfrak{H}} / \omega_{\mathfrak{H}}.$$

 $B_{2} < B_{\rm KB}$ для стоксового излучения.

Затухание внутрицентровой люминесценции

Уменьшение числа возбужденных центров dN = -ANdt,

где A – вероятность излучательного перехода за единицу времени. $I \propto -dN/dt = AN,$ ln N = -At + C.

где $C = lnN_0$ (N_0 – число возбужденных центров при t = 0).

Отсюда

$$N = N_0 e^{-At}$$
, (16.15)

Соответственно для интенсивности свечения в момент времени t имеем

$$I = I_0 e^{-At}$$
, (16.16)

где I₀ — интенсивность высвечивания в начальный (при t = 0) момент времени.

Закон затухания люминесценции (16.16) сохраняет силу и в случае, когда переход из возбужденных состояний в основное происходит частично безызлучательно, т. е. излучают не все молекулы, переходящие в основное состояние. Тогда

$$I = I_0 e^{-(A_0 + A_{B/0})t}, (16.17)$$

где A₀ и A_{в/0} — соответственно вераятности оптического и неоптического (безызлучательного) переходов. В результате

$$I = I_0 e^{-\frac{t}{\tau}}$$

где время затухания $\tau = 1/(A_{o} + A_{H/o})$.

Так как вероятность безызлучательного перехода $A_{H/o}$ зависит от температуры, то отсюда возникает эффект **температурного тушения**.

Существует также эффект концентрационного тушения, связанный с тем, что за счет резонансной передачи (механизм Фёрстера-Декстера) энергия возбуждения мигрирует от центра к центру вплоть до попадания на центр тушения.

Затухание рекомбинационной люминесценции

Если N – концентрация электронов и дырок, а P – вероятность рекомбинации пары электрон-дырка за единицу времени, то $dN = -PN^2 dt$.

Отсюда

$$-1/N = -Pt + C,$$

где C = $-1/N_0$ (N_0 – концентрация электронов при t = 0).

В результате получаем

то окончательно имеем

$$I = \frac{I_0}{(1 + N_0 P t)^2}$$

Затухание люминесценции

Внутрицентровое излучение:

$$I = I_0 e^{-\frac{t}{\tau}}$$

Рекомбинационное излучение:

$$I = \frac{I_0}{(1 + n_0 P t)^2}$$

Закон Бугера:
$$I(z) = I_0 e^{-\alpha z}$$

 $\alpha < 0 \rightarrow$ усиление. Как это сделать?

Рассмотрим сначала двухуровневую систему в поле световой волны.

Число спонтанных переходов в единицу времени

$$n_{21} = A_{21}n_2$$
.

Вероятности вынужденных переходов $E_1 \rightarrow E_2$ и $E_2 \rightarrow E_1$ одинаковы и характеризуются коэффициентом Эйнштейна *В* так, что

$$dI = -Bw(v)n_1hvdz + Bw(v)n_2hvdz,$$

где *dz* – толщина слоя вещества,

$$\frac{n_2}{n_1} = e^{-\frac{E_2 - E_1}{kT}}$$

Согласно Эйнштейну, коэффициенты A_{21}
и B связаны между собой соотношением

$$B=\frac{c^3}{8\pi h\nu^3}A_{21}.$$

Учитывая также то, что плотность энергии световой волны $w(v) = I/v_c$, получим c^3

$$dI = -I \frac{c^3}{8\pi v^2 v_z} A_{21} (n_1 - n_2) dz_1$$

Интегрирование уравнения даст закон Бугера

$$I(z) = I_0 e^{-\alpha z}$$

с коэффициентом поглощения

$$\alpha = \frac{c^3}{8\pi v^2 v_2} A_{21}(n_1 - n_2) .$$

Учет ширины уровней: $A_{21} = \int a_{21}(v) dv$
$$\bigcup$$
$$\alpha(v) = \frac{c^3}{8\pi v^2 v_2} a_{21}(v)(n_1 - n_2)$$

 $n_1 > n_2 \Longrightarrow \alpha > 0;$ Инверсная заселенность: $n_1 < n_2 \Longrightarrow \alpha < 0-$ как этого добиться?

Трехуровневая система: $A_{21} << A_{31}$; $A_{21} << A_{32}$.

Примерно такая схема уровней реализуется для Cr^{3+} в рубине (Al₂O₃). При наличии вынужденных переходов под действием света с $hv = E_3 - E_1$ со временем реализуется инверсная заселенность с $n_2 > n_1$.

Конструкция лазера:

- 1, 2 зеркала, 3 – кристалл рубина,
- 4 лампа накачки.

Зеркальный резонатор: $2Ln = m\lambda \rightarrow$ моды излучения с разными *m*, $\Delta v = c/2L$.

Свойства лазерного излучения:

- узкие спектральные моды,
- высокая направленность ($\theta \sim \lambda/D \sim$ нескольких минут),
- наличие порога генерации (- $\alpha_{\text{пор}} = \gamma/(2L)$),
- линейная зависимость мощности излучения от мощности накачки выше порога генерации,
- когерентность излучения.

Причина порога – потери, в том числе в зеркалах. После прохождения луча туда и обратно

$$I = I_0 e^{-2\alpha(\nu)L} R_1 R_2.$$

 $I > I_0$, если $R_1 R_2 e^{-2\alpha(\nu)L} > 1.$

Обозначим $R_1 R_2 = e^{-\gamma}$. Тогда условие усиления примет вид $2a(\nu)L < -\gamma,$ или $|a(\nu)| > \frac{\gamma}{2L} = -a_{nop}.$

Главные выводы

 Различают внутрицентровую и рекомбинационную люминесценцию, характеризующуюся разной кинетикой затухания.
 Кристаллофосфоры и лазерные генераторы имеют многообразные применения в различных областях техники.

3. Для получения лазерной генерации необходимы мощное возбуждение среды (выше порога генерации), схема уровней, допускающая возникновение инверсной заселенности, и зеркальный резонатор.