Фотоника и фотонные кристаллы

II. Диэлектрические фотонные кристаллы (5 часов)

- понятие о фотонике и фотонных кристаллах (ФК)
- фотонная зонная структура
- синтез ФК
- особенности структуры опаловых ФК

III. Взаимодействие света с веществом в ФК (3 часа)

- поглощающие и люминесцентные ФК
- лазерная генерация в ФК

IV. Металлические, магнитные, плазмонные ФК, сенсоры и метаматериалы (5 часов)

- плазмонные и магнитофотонные кристаллы
- сенсоры на основе ФК
- метаматериалы

Литература:

С.О. Климонский, В.В. Абрамова, А.С. Синицкий, Ю.Д. Третьяков. Синтез и особенности структуры фотонных кристаллов на основе опалов и инвертированных опалов. // Успехи химии, 2011, т. 80, № 12, с. 1244-1262.

Уважаемые студенты! Прошу Вас выбрать раздел курса, в рамках которого я дам Вам конкретную тему и литературу для написания реферата:

- понятие о фотонике и фотонных кристаллах (ФК);
- фотонная зонная структура;
- синтез ФК;
- особенности структуры опаловых ФК;
- люминесцентные и поглощающие ФК;
- лазерная генерация в ФК;
- плазмонные и магнитофотонные кристаллы;
- усиление взаимодействия света с веществом в
- фотоннокристаллических структурах;
- ФК как рефрактометрические и химические сенсоры;
- метаматериалы.

Список тем представлен на <u>http://www.klimonsky.ru/photonics</u>.

Лекция 1

- Понятие фотонного кристалла
- Основы теории фотонных кристаллов: одномерный случай
- Специфика трехмерных фотонных кристаллов
- Возможные применения фотонных кристаллов

Фотоника и фотонные кристаллы

Этапы развития фотоники:

- 1. Открытие лазеров (Т. Мейман, 1960)
- 2. Создание оптоволоконной техники (80-90-е гг.)
- **3.** Появление концепции фотонных кристаллов (*E. Yablonovitch – 1987; S. John – 1987*)

- открытие и изучение реальных фотоннокристаллических структур (Astratov V.N. et al., 1995 - опалы);

- компьютерное моделирование структур;
- развитие практических технологий.

Понятие фотонного кристалла

Фотонные кристаллы (ФК) – это композиционные материалы с пространственно-периодическим изменением коэффициента преломления в масштабах длины волны света, имеющие фотонные запрещенные зоны в спектре оптических состояний.

Схематическое представление одномерного (а), двухмерного (б) и трехмерного (в) ФК, образованного двумя разными материалами.

Понятие фотонного кристалла

Фотонные кристаллы – «полупроводники для света».

6

Основы теории фотонных кристаллов: одномерный случай

Периодическая многослойная структура с периодом *d*: белые области – вакуум, синие – диэлектрическая среда.

Основы теории фотонных кристаллов: одномерный случай

$$\begin{bmatrix} \frac{\partial^2 E(x)}{\partial x^2} + \frac{\varepsilon(x)\omega^2}{c^2} E(x) = 0\\ E(x+d) = \exp(ikd)E(x) \end{bmatrix}$$

- из уравнений Максвелла;

- из условия периодичности ФК.

Решения для областей I – III: $E_I(x) = A \exp(igx) + B \exp(-igx)$ $E_{II}(x) = C \exp(iqx) + D \exp(-iqx)$ $E_{III}(x) = A \exp(igx) + B \exp(-igx)$, где $g = \omega/c$, $q = \sqrt{\varepsilon \omega}/c$.

Граничные условия:

В области частот, в которой правая часть выражения по модулю больше единицы, возникает фотонная запрещенная зона!

Основы теории фотонных кристаллов: одномерный случай

Периодическая структура из пористого Al₂O₃

d = 165 HM, a = d/2, $n_1 = 1.54$, $n_2 = 1.36$.

В. С. Горелик, С. О. Климонский, В. В. Филатов, К. С. Напольский. Оптика и спектроскопия **120** (2016) 562.

Специфика трехмерных фотонных кристаллов

(a) Зонная структура для ФК, образованного полыми кремниевыми микросферами, упакованными в ГЦК решетку.

(б) Электронно-микроскопическое изображение соответствующего ФК

(A. Blanco et al., *Nature*, 405 (2000) 437).

Трехмерные кристаллы:

запрещенные зоны и стоп-зоны

Специфика трехмерных фотонных кристаллов

Дифракция света в трехмерных ФК приводит к тому, что он перераспределяется по разным разрешенным направлениям, но при этом не распространяется в направлениях стоп-зон. В результате ФК можно рассматривать как среду, управляющую направлениями световых потоков. Для работы в видимом диапазоне спектра такая среда должна иметь субмикронную периодичность.

Возможные применения

- Эффективные светоизлучающие устройства (к.п.д. ~ 50%)
- 🕒 Низкопороговые лазеры
- 🥥 Новые типы световых волокон
- Высокоскоростные оптические переключатели
- 🥥 Оптические фильтры
- 🥥 Устройства управления световыми потоками
- 🥥 Суперпризмы
- 🔍 Сенсоры
- Оптические ячейки памяти
- 🔮 Фотонные компьютеры

an and a second second second

Светодиоды на основе фотонных кристаллов

Обычный светодиод

Светодиод на основе фотонного кристалла

T.F. Krauss, R.M. De La Rue – 1999.

Альтернативные подходы в фотонике

Ch.-Yu Wang et al., All-optical transistor- and diode-action and logic gates based on anisotropic nonlinear responsive liquid crystal, Scientific Reports, 2016, 6, 30873.

Figure 1. The dye-doped TNLC optical diode. The schematic diagrams of (a) TNLC-based optical switch (b) TNLC-based all-optical diode. Its measured (c) diode characteristic curve, and the (d) optical isolation region of the device under different concentrations. Operation temperature was controlled at 25 °C to minimize the thermal fluctuations from environment.

- Методы синтеза двумерных и трехмерных фотонных кристаллов.
- Синтез коллоидных кристаллов.
- Темплатные методы синтеза инвертированных опалов.
- Оптические свойства опалов и инвертированных опалов.

Методы синтеза ФК

Схема получения ФК Яблоновича путем высверливания упорядоченных отверстий в диэлектрическом материале (E. Yablonovitch et al., *Phys. Rev. Lett.*, **67** (1991) 2295).

Методы синтеза ФК

• САМОСБОРКА

🔍 ЛИТОГРАФИЯ

🔵 ГОЛОГРАФИЯ

Method Advantage	Self-assembly	Lithography	Holography
2D/3D	+/+	+/±	+/+
Large-scale	+	ť	ť
RIC	+	+	Ι
No defects	l	+	±
Low cost	++	_	±

Интерференционная литография

Установка четырехлучевого голографического синтеза двумерных фотонных кристалов с использованием дифракционного элемента DOE.

- λ = 488 нм.
- J. Li et al., Adv. Mater. 22 (2010) 2676.

Двухфотонная 3D-печать

Двухфотонное поглощение позволяет повысить разрешающую способность лазерной 3D-печати

Двухфотонная 3D-печать

Двухфотонная 3D-печать с последующим сжатием структур при спекании. Масштабные метки – 10 и (для последней картинки) 1 мкм. 22

Зависимость среднего размера частиц от концентрации аммиака и воды в реакционной смеси

TEOS

NH₃

C₂H₅OH

 H_2O

Параметры: d = 200-500 нм, σ ~ 5%

Зависимость среднего размера полистирольных микросфер от массового соотношения «стирол-вода» в реакционной смеси объемом 550 мл при фиксированной концентрации с(K₂S₂O₈) = 7,5·10⁻⁴ г/мл.

24

Зависимость среднего размера микросфер SiO₂ от концентрации ТЭОСа в реакционной смеси 7,75М H₂O и 1М NH₄OH.

Синтез микрочастиц полистирола по методике J. Shao et al., The Journal of The Textile Institute **105** (2014) 938.

Диаметр наночастиц d ~ 30-40 нм

<u>Доращивание зародышей</u>

(*Климонский С.О. и др. //* Доклады РАН **457** (2014) 50):

- добавление TEOS маленькими порциями через каждые 10 минут;

- удвоение количества введенного ТЕОЅ каждый час;
- удвоение диаметра микрочастиц SiO₂ каждые 3 часа;
- pH > 9;
- периодическое разбавление раствора новыми порциями спирта во избежание агрегации.

d = 84 HM

d = 209 HM

Синтез коллоидных кристаллов

Естественная седиментация

(«объемные образцы»)

Температура: комнатная

Продолжительность: 1-9 месяцев

Вертикальное осаждение

Температура: 45-50 °С

Продолжительность: несколько дней

Jiang P. et al. // Chem. Mater. 11 (1999) 2132. 30

(«пленочные образцы»)

Синтез коллоидных кристаллов

Электронно-микроскопическое изображение коллоидного кристалла на основе полистирольных микросфер, полученного методом естественной седиментации. Отмечены кристаллографические плоскости, характерные для ГЦК структуры.

Различные плоскости ГЦК-структуры

Образование доменов

Доменная структура

Зародыши «кристаллизации»

Синтез коллоидных кристаллов

Вертикальное осаждение:

Темплатные методы синтеза инвертированных опалов

Схема темплатного синтеза инвертированных опалов. (А) – синтез темплата, (Б) – заполнение пустот прекурсором, (В) – удаление темплата.

Темплатные методы синтеза инвертированных опалов

Структура инвертированного опала (компьютерное моделирование).

Условия синтеза оксидных инвертированных опалов

Состав инвертиро-	Состав раствора прекурсора	Температура и продол-
ванного опала		жительность отжига
SiO ₂	6 мл Si(OC ₂ H ₅) ₄ , 4 мл EtOH, 3 мл	550 °С, 10 ч
	H ₂ O, 1 мл HCl	
TiO ₂	Ті(OC ₄ H ₉) ₄ – гептан (1:1)	400-600 °С, 10 ч
Al ₂ O ₃	Насыщенный водно-спиртовой (1:1)	300-600 °С, 10 ч
	Al(NO ₃) ₃	
ZnO	Насыщенный водно-спиртовой (1:1)	300-600 °С, 10 ч
	$Zn(NO_3)_2$	
WO ₃	Золь WO ₃ в этиловом спирте, синтез	400-600 °С, 10 ч
Mn ₃ O ₄	Насыщенный водно-спиртовой (1:1)	300-600 °С, 10 ч
	(CH ₃ COO) ₂ Mn	
Fe ₂ O ₃	Насыщенный водно-спиртовой (1:1)	300-600 °С, 10 ч
	Fe(NO ₃) ₃	
MgO	Насыщенный водно-спиртовой (1:1)	300-600 °С, 10 ч
	$Mg(NO_3)_2$	

Инвертированный опал из ТіО₂

Темплатные методы синтеза инвертированных опалов

Электронно-микроскопические изображения инвертированных опалов на основе (a) Fe_2O_3 , (b) TiO_2 и (c) SiO_2 . На вставках показаны Фурье-образы изображений. (d) Изображение скола инвертированного опала на основе TiO_2 (A.S. Sinitskii et al., *Europhysics Letters*, **89** (2010) 14002).

Темплатные методы синтеза инвертированных опалов

Электронно-микроскопические изображения инвертированных опалов на основе ZnO (сверху), Mn₃O₄ (снизу).

EN HE I AND THAT CO OT A DESCRIPTION OF 1 m 1.5.8.4

Электроосаждение металлических

фотонных кристаллов

Осаждаемый металл	Состав электролита	Потенциал осаждения, В
Ni	0,6 M NiSO ₄ , 0,1 M NiCl ₂ , 0,3 M H ₃ BO ₃ , 3,5 M C ₂ H ₅ OH	-0,9
Со	0,2 M CoSO ₄ , 0,3 M H ₃ BO ₃ , 3,5 M C ₂ H ₅ OH	-0,9
Pd	0,05 M PdCl ₂ , 0,5 M HCl, 3,5 M C ₂ H ₅ OH	0,1

Оптические свойства опалов

Спектры пропускания пленочных коллоидных кристаллов на основе полистирольных микросфер со средним диаметром 590, 525, 455 и 410 нм (нормальное направление).

Оптические свойства опалов

Положение стоп-зоны:

$$\lambda = \frac{2D}{m} \sqrt{n^2(\lambda) - \sin^2 \Theta} , \text{ rge } n = [n_{PS}^2(\lambda) \cdot f_{PS} + n_{air}^2 \cdot (1 - f_{PS})]^{\frac{1}{2}}, m = 1, 2, 3, \dots$$

Оптические свойства опалов

Модифицированный закон Вульфа-Брэгга

$$\lambda = \frac{2D}{m} \sqrt{n^2(\lambda) - \sin^2 \Theta}$$

$$\mu = [n_{PS}^2(\lambda) \cdot f_{PS} + n_{air}^2 \cdot (1 - f_{PS})]^{\frac{1}{2}}$$

Г

A.S. Sinitskii et al., *Mend. Commun.*, **17** (2007) 4. 45

Оптические свойства

опалов

Движение стоп-зон в зависимости от угла наблюдения по отношению к нормали в спектрах пропускания (а) и отражения (б) пленки опала из полистирола (диаметр микрочастц 410 нм).

A.S. Sinitskii et al., Mend. Commun., 17 (2007) 4.

1D-фотонные кристаллы на основе

анодного оксида алюминия

1 – спектр пропускания в нормальном направлении;
 2 – спектр отражения под углом 8° от лицевой стороны образца.

В.С. Горелик, С.О. Климонский, В.В. Филатов, К.С. Напольский. Оптика и спектроскопия **120** (2016) 562.