11. Плазмонные нанотехнологии в оптике

- 🔵 Плазменные колебания и волны.
- Генерация плазмон-поляритонных волн (ППВ) на периодически структурированной поверхности проводника.
- Плазмонные наночастицы в цветных стеклах. Загадки дихроизма.
- Гигантское комбинационное рассеяние.

Колебания в твердотельной плазме

Колебания и волны в твердотельной плазме

Объемные (a), поверхностные (b) плазмоны и плазменные колебания, локализованные в наночастице (c).

11. Плазмонные нанотехнологии в оптике

- 🔵 Плазменные колебания и волны.
- Генерация плазмон-поляритонных волн (ППВ) на периодически структурированной поверхности проводника.
- Плазмонные наночастицы в цветных стеклах. Загадки дихроизма.
- 🔵 Гигантское комбинационное рассеяние.

Генерация ППВ на периодически структурированной поверхности проводника

Условия генерации ППВ на поверхности металла (А.Г. Жданов и др., ICFM-2009, Партенит, Украина).

Генерация ППВ на периодически структурированной поверхности проводника

Особенность Вуда для одномерной периодической структуры (период *d* = 320 нм) (A.A. Grunin et al., *Appl. Phys. Lett.*, 97 (2010) 261908). Генерация ППВ на периодически структурированной поверхности проводника

Особенность Вуда при модуляции структуры под разными азимутальными углами Ψ к плоскости падения света (d = 320 нм) (A.A. Grunin et al., *Appl. Phys. Lett.*, 97 (2010) 261908).

6

Экспериментальное наблюдение усиления магнитооптического эффекта Керра

Спектры поперечного эффекта Керра для неструктурированного (пунктирная кривая) и одномерно периодически структурированного (синяя сплошная кривая) образцов из никеля; спектр отражения структурированного образца (зеленая кривая) (Grunin A.A. et al., Appl. Phys. Lett., 97 (2010) 261908). Угол падения света – 68°.

Экспериментальное наблюдение усиления магнитооптического эффекта Керра

Магнитоплазмонная гетероструктура с периодической решеткой из золота на поверхности.

V.I. Belotelov et al. Nature nanotechnology 6 (2011) 370.

Экспериментальное наблюдение усиления магнитооптического эффекта Керра

H = 2000 Oe

 $\theta = 15^{\circ}$

Поперечный магнитооптический эффект Керра для магнитоплазмонной гетероструктуры с периодической решеткой из золота на поверхности.

V.I. Belotelov et al. Nature nanotechnology 6 (2011) 370.

11. Плазмонные нанотехнологии в оптике

- 🔵 Плазменные колебания и волны.
- Генерация плазмон-поляритонных волн (ППВ) на периодически структурированной поверхности проводника.
- Плазмонные наночастицы в цветных стеклах. Загадки дихроизма.
- Гигантское комбинационное рассеяние.

Свойства наночастиц золота

М. Фарадей

Коллоидный раствор золота

Спектр поглощения наночастиц золота в коллоидном растворе

Стекла с наночастицами золота

Кубок Ликурга (Британский музей, IV век н.э.)

Образец, воспроизводящий свойства кубка Ликурга (химфак МГУ)

Стекла с наночастицами золота

Просвечивающая электронная микроскопия состоящей из серебра и золота наночастицы, найденной в стекле кубка Ликурга (Barber D.J. and Freestone I.C., *Archaeometry*, **32** (1990) 33).

Нанотехнологии существовали уже в древнем Риме!

Состав кубка Ликурга, вес.%

SiO ₂	♥ Na ₂ O	CaO	K ₂ C) Mg	0	A	2O3	Fe ₂ O ₃	$\begin{array}{c} \textcircled{\bullet}\\ P_2O_5 \end{array}$
73.5	14	6.5	0.9	0.5	0.55		2.5	1.5	0.2
MnO ₂	Sb ₂ O ₃	CuO	PbO	SnO ₂	B ₂	O ₃	TiO ₂	Ag	Au
0.45	0.3	0.04	0.2	0.01	0	.1	0.07	0.03	0.004

Базовый состав шихты:

CaO*2.00Na₂O*10,33SiO₂ + (Fe₂O₃, SnO₂, Ca₃(PO₄)₂, Au, AgNO₃)

16

X

Фазовое разделение в «наведенном» матовом стекле

600 °C, 1 h

650 °C, 25 h

Свойства дихроичного стекла

11. Плазмонные нанотехнологии в оптике

- 🔵 Плазменные колебания и волны.
- Генерация плазмон-поляритонных волн (ППВ) на периодически структурированной поверхности проводника.
- Плазмонные наночастицы в цветных стеклах. Загадки дихроизма.
- Гигантское комбинационное рассеяние.

Гигатское комбинационное рассеяние (ГКР)

Комбинационное рассеяние

«Горячая точка» ГКР

Гигатское комбинационное рассеяние (ГКР)

Степень усиления

$$SMEF \approx \frac{|E_{Loc}(\omega_L)|^4}{|E_{loc}|^4}$$

«Горячая точка» ГКР

Усиление взаимодействия света с веществом в фотонных кристаллах

Замедление света на границе зоны Бриллюэна

Усиление комбинационного рассеяния в фотонных кристаллах

Синтез пленок фотонных кристаллов со структурой инвертированного опала A. Ashurov, A. Baranchikov, S. Klimonsky, *Phys. Chem. Chem. Phys.*, 2020, **22**, 9630—9636.

Усиление комбинационного рассеяния в фотонных кристаллах

Электронно-микроскопическое изображение получаемых образцов

A. Ashurov, A. Baranchikov, S. Klimonsky, *Phys. Chem. Chem. Phys.*, 2020, **22**, 9630.

Усиление комбинационного рассеяния в фотонных кристаллах

Корреляция спектров отражения и комбинационного рассеяния для **разных образцов** (A. Ashurov et al., *Phys. Chem. Chem. Phys.*, 2020, **22**, 9630). ²⁶

Усиление гигантского комбинационного рассеяния при наличии наночастиц золота

Transmittanse spectra of various samples

before (solid lines) and after (dotted lines)

of Au NPs embedding.

The laser wavelength is 532 nm.

> Raman spectra of the same samples after double impregnation with 10⁻⁴ M MB ethanol-based solution.

> > * - the main peak of the MB dye.

▲ - ETPTA peaks.

M. Ashurov et al., Phys. Chem. Chem. Phys., 2021, 23, 20275.

Усиление гигантского комбинационного рассеяния при наличии наночастиц золота

Raman spectra for various concentrations of MB in solutions impregnating sample 2.

Enhancement factor due to SPE ≈ 20 .

The total enhancement factor (SERS + SPE):

$$\mathsf{EF} = \frac{I_{\mathsf{SERS}}/N_{\mathsf{SERS}}}{I_0/N_0} ~ \sim 10^5$$

 $(N = C_1 \cdot N_A \cdot S_{scat} \cdot h,$ $h \approx 2 \ \mu m$ for Au enriched layer in the sample, $h_0 \approx 6 \ \mu m$ for $C_1 = 0.2 \ M$ MB reference solution).

The detection limit for MB $\approx 10^{-7}$ M.

M. Ashurov et al., Phys. Chem. Chem. Phys., 2021, 23, 20275.